分类数据聚类的混合网络:一种惩罚复合似然方法

Jangsun Baek, Jeong‐Soo Park
{"title":"分类数据聚类的混合网络:一种惩罚复合似然方法","authors":"Jangsun Baek, Jeong‐Soo Park","doi":"10.1080/00031305.2022.2141856","DOIUrl":null,"url":null,"abstract":"Abstract One of the challenges in clustering categorical data is the curse of dimensionality caused by the inherent sparsity of high-dimensional data, the records of which include a large number of attributes. The latent class model (LCM) assumes local independence between the variables in clusters, and is a parsimonious model-based clustering approach that has been used to circumvent the problem. The mixture of a log-linear model is more flexible but requires more parameters to be estimated. In this research, we recognize that each categorical observation can be conceived as a network with pairwise linked nodes, which are the response levels of the observation attributes. Therefore, the categorical data for clustering is considered a finite mixture of different component layer networks with distinct patterns. We apply a penalized composite likelihood approach to a finite mixture of networks for sparse multivariate categorical data to reduce the number of parameters, implement the EM algorithm to estimate the model parameters, and show that the estimates are consistent and satisfy asymptotic normality. The performance of the proposed approach is shown to be better in comparison with the conventional methods for both synthetic and real datasets.","PeriodicalId":342642,"journal":{"name":"The American Statistician","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixture of Networks for Clustering Categorical Data: A Penalized Composite Likelihood Approach\",\"authors\":\"Jangsun Baek, Jeong‐Soo Park\",\"doi\":\"10.1080/00031305.2022.2141856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One of the challenges in clustering categorical data is the curse of dimensionality caused by the inherent sparsity of high-dimensional data, the records of which include a large number of attributes. The latent class model (LCM) assumes local independence between the variables in clusters, and is a parsimonious model-based clustering approach that has been used to circumvent the problem. The mixture of a log-linear model is more flexible but requires more parameters to be estimated. In this research, we recognize that each categorical observation can be conceived as a network with pairwise linked nodes, which are the response levels of the observation attributes. Therefore, the categorical data for clustering is considered a finite mixture of different component layer networks with distinct patterns. We apply a penalized composite likelihood approach to a finite mixture of networks for sparse multivariate categorical data to reduce the number of parameters, implement the EM algorithm to estimate the model parameters, and show that the estimates are consistent and satisfy asymptotic normality. The performance of the proposed approach is shown to be better in comparison with the conventional methods for both synthetic and real datasets.\",\"PeriodicalId\":342642,\"journal\":{\"name\":\"The American Statistician\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American Statistician\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2022.2141856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Statistician","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00031305.2022.2141856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要高维数据的记录包含大量的属性,高维数据固有的稀疏性导致了维度的诅咒,这是分类数据聚类的挑战之一。潜在类模型(LCM)假设集群中变量之间的局部独立性,是一种简化的基于模型的聚类方法,已被用于规避该问题。对数-线性混合模型更灵活,但需要估计的参数更多。在本研究中,我们认识到每个分类观测值可以被视为一个具有成对连接节点的网络,这些节点是观测属性的响应水平。因此,用于聚类的分类数据被认为是具有不同模式的不同组件层网络的有限混合。我们对稀疏多元分类数据的有限混合网络应用惩罚复合似然方法来减少参数数量,实现EM算法来估计模型参数,并证明估计是一致的,并且满足渐近正态性。在合成数据集和真实数据集上,与传统方法相比,该方法的性能都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixture of Networks for Clustering Categorical Data: A Penalized Composite Likelihood Approach
Abstract One of the challenges in clustering categorical data is the curse of dimensionality caused by the inherent sparsity of high-dimensional data, the records of which include a large number of attributes. The latent class model (LCM) assumes local independence between the variables in clusters, and is a parsimonious model-based clustering approach that has been used to circumvent the problem. The mixture of a log-linear model is more flexible but requires more parameters to be estimated. In this research, we recognize that each categorical observation can be conceived as a network with pairwise linked nodes, which are the response levels of the observation attributes. Therefore, the categorical data for clustering is considered a finite mixture of different component layer networks with distinct patterns. We apply a penalized composite likelihood approach to a finite mixture of networks for sparse multivariate categorical data to reduce the number of parameters, implement the EM algorithm to estimate the model parameters, and show that the estimates are consistent and satisfy asymptotic normality. The performance of the proposed approach is shown to be better in comparison with the conventional methods for both synthetic and real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信