{"title":"氨基酸和氨代谢中的肝细胞异质性。","authors":"D Häussinger, W H Lamers, A F Moorman","doi":"10.1159/000468779","DOIUrl":null,"url":null,"abstract":"<p><p>With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate synthase and glutamine synthase in the liver lobule. The mechanisms underlying the different sublobular gene expressions are not yet settled but may involve the development of hepatic architecture, innervation, blood-borne hormonal and metabolic factors. The periportal zone is characterized by a high capacity for uptake and catabolism of amino acids (except glutamate and aspartate) as well as for urea synthesis and gluconeogenesis. On the other hand, glutamine synthesis, ornithine transamination and the uptake of vascular glutamate, aspartate, malate and alpha-ketoglutarate are restricted to a small perivenous hepatocyte population. Accordingly, in the intact liver lobule the major pathways for ammonia detoxication, urea and glutamine synthesis, are anatomically switched behind each other and represent in functional terms the sequence of the periportal low affinity system (urea synthesis) and a previous high affinity system (glutamine synthesis) for ammonia detoxication. Perivenous glutamine synthase-containing hepatocytes ('scavenger cells') act as a high affinity scavenger for the ammonia, which escapes the more upstream urea-synthesizing compartment. Periportal glutaminase acts as a pH- and hormone-modulated ammonia-amplifying system in the mitochondria of periportal hepatocytes. The activity of this amplifying system is one crucial determinant for flux through the urea cycle in view of the high Km (ammonia) of carbamoylphosphate synthase, the rate-controlling enzyme of the urea cycle. The structural and functional organization of glutamine and ammonia-metabolizing pathways in the liver lobule provides one basis for the understanding of a hepatic role in systemic acid base homeostasis. Urea synthesis is a major pathway for irreversible removal of metabolically generated bicarbonate. The lobular organization enables the adjustment of the urea cycle flux and accordingly the rate of irreversible hepatic bicarbonate elimination to the needs of the systemic acid base situation, without the threat of hyperammonemia.</p>","PeriodicalId":11933,"journal":{"name":"Enzyme","volume":"46 1-3","pages":"72-93"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000468779","citationCount":"217","resultStr":"{\"title\":\"Hepatocyte heterogeneity in the metabolism of amino acids and ammonia.\",\"authors\":\"D Häussinger, W H Lamers, A F Moorman\",\"doi\":\"10.1159/000468779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate synthase and glutamine synthase in the liver lobule. The mechanisms underlying the different sublobular gene expressions are not yet settled but may involve the development of hepatic architecture, innervation, blood-borne hormonal and metabolic factors. The periportal zone is characterized by a high capacity for uptake and catabolism of amino acids (except glutamate and aspartate) as well as for urea synthesis and gluconeogenesis. On the other hand, glutamine synthesis, ornithine transamination and the uptake of vascular glutamate, aspartate, malate and alpha-ketoglutarate are restricted to a small perivenous hepatocyte population. Accordingly, in the intact liver lobule the major pathways for ammonia detoxication, urea and glutamine synthesis, are anatomically switched behind each other and represent in functional terms the sequence of the periportal low affinity system (urea synthesis) and a previous high affinity system (glutamine synthesis) for ammonia detoxication. Perivenous glutamine synthase-containing hepatocytes ('scavenger cells') act as a high affinity scavenger for the ammonia, which escapes the more upstream urea-synthesizing compartment. Periportal glutaminase acts as a pH- and hormone-modulated ammonia-amplifying system in the mitochondria of periportal hepatocytes. The activity of this amplifying system is one crucial determinant for flux through the urea cycle in view of the high Km (ammonia) of carbamoylphosphate synthase, the rate-controlling enzyme of the urea cycle. The structural and functional organization of glutamine and ammonia-metabolizing pathways in the liver lobule provides one basis for the understanding of a hepatic role in systemic acid base homeostasis. Urea synthesis is a major pathway for irreversible removal of metabolically generated bicarbonate. The lobular organization enables the adjustment of the urea cycle flux and accordingly the rate of irreversible hepatic bicarbonate elimination to the needs of the systemic acid base situation, without the threat of hyperammonemia.</p>\",\"PeriodicalId\":11933,\"journal\":{\"name\":\"Enzyme\",\"volume\":\"46 1-3\",\"pages\":\"72-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000468779\",\"citationCount\":\"217\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000468779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000468779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hepatocyte heterogeneity in the metabolism of amino acids and ammonia.
With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate synthase and glutamine synthase in the liver lobule. The mechanisms underlying the different sublobular gene expressions are not yet settled but may involve the development of hepatic architecture, innervation, blood-borne hormonal and metabolic factors. The periportal zone is characterized by a high capacity for uptake and catabolism of amino acids (except glutamate and aspartate) as well as for urea synthesis and gluconeogenesis. On the other hand, glutamine synthesis, ornithine transamination and the uptake of vascular glutamate, aspartate, malate and alpha-ketoglutarate are restricted to a small perivenous hepatocyte population. Accordingly, in the intact liver lobule the major pathways for ammonia detoxication, urea and glutamine synthesis, are anatomically switched behind each other and represent in functional terms the sequence of the periportal low affinity system (urea synthesis) and a previous high affinity system (glutamine synthesis) for ammonia detoxication. Perivenous glutamine synthase-containing hepatocytes ('scavenger cells') act as a high affinity scavenger for the ammonia, which escapes the more upstream urea-synthesizing compartment. Periportal glutaminase acts as a pH- and hormone-modulated ammonia-amplifying system in the mitochondria of periportal hepatocytes. The activity of this amplifying system is one crucial determinant for flux through the urea cycle in view of the high Km (ammonia) of carbamoylphosphate synthase, the rate-controlling enzyme of the urea cycle. The structural and functional organization of glutamine and ammonia-metabolizing pathways in the liver lobule provides one basis for the understanding of a hepatic role in systemic acid base homeostasis. Urea synthesis is a major pathway for irreversible removal of metabolically generated bicarbonate. The lobular organization enables the adjustment of the urea cycle flux and accordingly the rate of irreversible hepatic bicarbonate elimination to the needs of the systemic acid base situation, without the threat of hyperammonemia.