利用机器学习减少商用FPGA仿真系统的编译工作量

Anthony Agnesina, E. Lepercq, J. Escobedo, S. Lim
{"title":"利用机器学习减少商用FPGA仿真系统的编译工作量","authors":"Anthony Agnesina, E. Lepercq, J. Escobedo, S. Lim","doi":"10.1109/iccad45719.2019.8942091","DOIUrl":null,"url":null,"abstract":"This paper presents a machine learning (ML) framework to improve the use of computing resources in the FPGA compilation step of a commercial FPGA-based logic emulation flow. Our ML models enable highly accurate predictability of the final P&R design qualities, runtime, and optimal mapping parameters. We identify key compilation features that may require aggressive compilation efforts using our ML models. Experiments based on our large-scale database from an industry's emulation system show that our ML models help reduce the total number of jobs required for a given netlist by 33%. Moreover, our job scheduling algorithm based on our ML model reduces the overall time to completion of concurrent compilation runs by 24%. In addition, we propose a new method to compute “recommendations” from our ML model, in order to perform repartitioning of difficult partitions. Tested on a large-scale industry SoC design, our recommendation flow provides additional 15% compile time savings for the entire SoC.","PeriodicalId":363364,"journal":{"name":"2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reducing Compilation Effort in Commercial FPGA Emulation Systems Using Machine Learning\",\"authors\":\"Anthony Agnesina, E. Lepercq, J. Escobedo, S. Lim\",\"doi\":\"10.1109/iccad45719.2019.8942091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a machine learning (ML) framework to improve the use of computing resources in the FPGA compilation step of a commercial FPGA-based logic emulation flow. Our ML models enable highly accurate predictability of the final P&R design qualities, runtime, and optimal mapping parameters. We identify key compilation features that may require aggressive compilation efforts using our ML models. Experiments based on our large-scale database from an industry's emulation system show that our ML models help reduce the total number of jobs required for a given netlist by 33%. Moreover, our job scheduling algorithm based on our ML model reduces the overall time to completion of concurrent compilation runs by 24%. In addition, we propose a new method to compute “recommendations” from our ML model, in order to perform repartitioning of difficult partitions. Tested on a large-scale industry SoC design, our recommendation flow provides additional 15% compile time savings for the entire SoC.\",\"PeriodicalId\":363364,\"journal\":{\"name\":\"2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccad45719.2019.8942091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccad45719.2019.8942091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种机器学习(ML)框架,以改善基于商用FPGA的逻辑仿真流的FPGA编译步骤中计算资源的使用。我们的机器学习模型能够高度准确地预测最终的P&R设计质量、运行时间和最佳映射参数。我们确定了可能需要使用我们的ML模型进行积极编译工作的关键编译特性。基于行业仿真系统的大规模数据库的实验表明,我们的ML模型有助于将给定网络列表所需的工作总数减少33%。此外,我们基于ML模型的作业调度算法将完成并发编译运行的总时间减少了24%。此外,我们提出了一种从我们的ML模型中计算“推荐”的新方法,以便对困难的分区执行重新分区。经过大规模工业SoC设计的测试,我们的推荐流程为整个SoC节省了15%的编译时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Compilation Effort in Commercial FPGA Emulation Systems Using Machine Learning
This paper presents a machine learning (ML) framework to improve the use of computing resources in the FPGA compilation step of a commercial FPGA-based logic emulation flow. Our ML models enable highly accurate predictability of the final P&R design qualities, runtime, and optimal mapping parameters. We identify key compilation features that may require aggressive compilation efforts using our ML models. Experiments based on our large-scale database from an industry's emulation system show that our ML models help reduce the total number of jobs required for a given netlist by 33%. Moreover, our job scheduling algorithm based on our ML model reduces the overall time to completion of concurrent compilation runs by 24%. In addition, we propose a new method to compute “recommendations” from our ML model, in order to perform repartitioning of difficult partitions. Tested on a large-scale industry SoC design, our recommendation flow provides additional 15% compile time savings for the entire SoC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信