关于圆形排列中许多面的复杂性

P. Agarwal, B. Aronov, M. Sharir
{"title":"关于圆形排列中许多面的复杂性","authors":"P. Agarwal, B. Aronov, M. Sharir","doi":"10.1109/SFCS.2001.959882","DOIUrl":null,"url":null,"abstract":"We obtain improved bounds on the complexity of m distinct faces in an arrangement of n circles and in an arrangement of n unit circles. The bounds are worst-case tight for unit circles, and, for general circles, they nearly coincide with the best known bounds for the number of incidences between m points and n circles.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the complexity of many faces in arrangements of circles\",\"authors\":\"P. Agarwal, B. Aronov, M. Sharir\",\"doi\":\"10.1109/SFCS.2001.959882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain improved bounds on the complexity of m distinct faces in an arrangement of n circles and in an arrangement of n unit circles. The bounds are worst-case tight for unit circles, and, for general circles, they nearly coincide with the best known bounds for the number of incidences between m points and n circles.\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们得到了n个圆和n个单位圆排列中m个不同面复杂度的改进界。对于单位圆,边界是最坏情况下最紧的,对于一般圆,它们几乎与m个点和n个圆之间的发生率的已知边界一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complexity of many faces in arrangements of circles
We obtain improved bounds on the complexity of m distinct faces in an arrangement of n circles and in an arrangement of n unit circles. The bounds are worst-case tight for unit circles, and, for general circles, they nearly coincide with the best known bounds for the number of incidences between m points and n circles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信