基于方面的文化遗产流数据社区检测

Elias Dritsas, M. Trigka, Gerasimos Vonitsanos, Andreas Kanavos, Phivos Mylonas
{"title":"基于方面的文化遗产流数据社区检测","authors":"Elias Dritsas, M. Trigka, Gerasimos Vonitsanos, Andreas Kanavos, Phivos Mylonas","doi":"10.1109/IISA52424.2021.9555549","DOIUrl":null,"url":null,"abstract":"Twitter is considered a major and very popular social network providing an abundance of data generated by users’ interactions through tweets. After an appropriate analysis of this information, sets consisting of users who share similar attributes, and preferences can be identified. Massive cultural content management is important because reviews can be analyzed for extracting significant representations. In this study, an aspect mining method of a cultural heritage approach by incorporating big data methods, is proposed. We propose the combination of a community detection algorithm, i.e., the Parallel Structural Clustering Algorithm for Networks (PSCAN), with topic modelling methods, i.e., the Latent Dirichlet Allocation (LDA), for performing large-scale data analysis in Twitter.","PeriodicalId":437496,"journal":{"name":"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Aspect-Based Community Detection of Cultural Heritage Streaming Data\",\"authors\":\"Elias Dritsas, M. Trigka, Gerasimos Vonitsanos, Andreas Kanavos, Phivos Mylonas\",\"doi\":\"10.1109/IISA52424.2021.9555549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter is considered a major and very popular social network providing an abundance of data generated by users’ interactions through tweets. After an appropriate analysis of this information, sets consisting of users who share similar attributes, and preferences can be identified. Massive cultural content management is important because reviews can be analyzed for extracting significant representations. In this study, an aspect mining method of a cultural heritage approach by incorporating big data methods, is proposed. We propose the combination of a community detection algorithm, i.e., the Parallel Structural Clustering Algorithm for Networks (PSCAN), with topic modelling methods, i.e., the Latent Dirichlet Allocation (LDA), for performing large-scale data analysis in Twitter.\",\"PeriodicalId\":437496,\"journal\":{\"name\":\"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA52424.2021.9555549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA52424.2021.9555549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Twitter被认为是一个主要的、非常受欢迎的社交网络,它提供了大量的数据,这些数据是由用户通过Twitter进行互动产生的。在对这些信息进行适当的分析之后,可以确定由具有相似属性和偏好的用户组成的集合。大规模的文化内容管理很重要,因为可以分析评论以提取重要的表示。本研究提出了一种结合大数据方法的文化遗产方面挖掘方法。我们提出将社区检测算法(即网络并行结构聚类算法(PSCAN))与主题建模方法(即潜在狄利let分配(LDA))相结合,用于在Twitter中进行大规模数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect-Based Community Detection of Cultural Heritage Streaming Data
Twitter is considered a major and very popular social network providing an abundance of data generated by users’ interactions through tweets. After an appropriate analysis of this information, sets consisting of users who share similar attributes, and preferences can be identified. Massive cultural content management is important because reviews can be analyzed for extracting significant representations. In this study, an aspect mining method of a cultural heritage approach by incorporating big data methods, is proposed. We propose the combination of a community detection algorithm, i.e., the Parallel Structural Clustering Algorithm for Networks (PSCAN), with topic modelling methods, i.e., the Latent Dirichlet Allocation (LDA), for performing large-scale data analysis in Twitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信