软分类的地理加权全复合误差分析

N. Tsutsumida, T. Yoshida, D. Murakami, T. Nakaya
{"title":"软分类的地理加权全复合误差分析","authors":"N. Tsutsumida, T. Yoshida, D. Murakami, T. Nakaya","doi":"10.1109/IGARSS39084.2020.9323939","DOIUrl":null,"url":null,"abstract":"Errors in land cover classification are often spatially heterogeneous even though a soft classification model such as spectral unmixing is implemented to mitigate a mixed pixel problem. The estimated land covers are fractions of targeted classes with the restriction of the sum to one and being non-negative. To assess the classification with considering a spatial heterogeneity, we propose a geographically weighted total composite error analysis. By using the USGS global reference database, we assessed errors of spectral unmixing classification of ALOS AVNIR-2 data into 4 land cover classes. Results yield a spatial surface of local errors by the Aitchison distance and address that the error magnitude across space is associated with the complexity of land covers.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Geographically Weighted Total Composite Error Analysis for Soft Classification\",\"authors\":\"N. Tsutsumida, T. Yoshida, D. Murakami, T. Nakaya\",\"doi\":\"10.1109/IGARSS39084.2020.9323939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Errors in land cover classification are often spatially heterogeneous even though a soft classification model such as spectral unmixing is implemented to mitigate a mixed pixel problem. The estimated land covers are fractions of targeted classes with the restriction of the sum to one and being non-negative. To assess the classification with considering a spatial heterogeneity, we propose a geographically weighted total composite error analysis. By using the USGS global reference database, we assessed errors of spectral unmixing classification of ALOS AVNIR-2 data into 4 land cover classes. Results yield a spatial surface of local errors by the Aitchison distance and address that the error magnitude across space is associated with the complexity of land covers.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管采用了光谱分解等软分类模型来缓解混合像元问题,但土地覆盖分类中的误差往往是空间异质性的。估计的土地覆盖是目标类别的一部分,其总和限制为1,并且是非负的。为了评估分类与考虑空间异质性,我们提出了一个地理加权的总复合误差分析。利用美国地质调查局(USGS)全球参考数据库,对ALOS AVNIR-2数据的光谱分解分类误差进行了评估。结果通过艾奇逊距离产生局部误差的空间表面,并指出空间误差的大小与土地覆盖的复杂性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Geographically Weighted Total Composite Error Analysis for Soft Classification
Errors in land cover classification are often spatially heterogeneous even though a soft classification model such as spectral unmixing is implemented to mitigate a mixed pixel problem. The estimated land covers are fractions of targeted classes with the restriction of the sum to one and being non-negative. To assess the classification with considering a spatial heterogeneity, we propose a geographically weighted total composite error analysis. By using the USGS global reference database, we assessed errors of spectral unmixing classification of ALOS AVNIR-2 data into 4 land cover classes. Results yield a spatial surface of local errors by the Aitchison distance and address that the error magnitude across space is associated with the complexity of land covers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信