{"title":"软分类的地理加权全复合误差分析","authors":"N. Tsutsumida, T. Yoshida, D. Murakami, T. Nakaya","doi":"10.1109/IGARSS39084.2020.9323939","DOIUrl":null,"url":null,"abstract":"Errors in land cover classification are often spatially heterogeneous even though a soft classification model such as spectral unmixing is implemented to mitigate a mixed pixel problem. The estimated land covers are fractions of targeted classes with the restriction of the sum to one and being non-negative. To assess the classification with considering a spatial heterogeneity, we propose a geographically weighted total composite error analysis. By using the USGS global reference database, we assessed errors of spectral unmixing classification of ALOS AVNIR-2 data into 4 land cover classes. Results yield a spatial surface of local errors by the Aitchison distance and address that the error magnitude across space is associated with the complexity of land covers.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Geographically Weighted Total Composite Error Analysis for Soft Classification\",\"authors\":\"N. Tsutsumida, T. Yoshida, D. Murakami, T. Nakaya\",\"doi\":\"10.1109/IGARSS39084.2020.9323939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Errors in land cover classification are often spatially heterogeneous even though a soft classification model such as spectral unmixing is implemented to mitigate a mixed pixel problem. The estimated land covers are fractions of targeted classes with the restriction of the sum to one and being non-negative. To assess the classification with considering a spatial heterogeneity, we propose a geographically weighted total composite error analysis. By using the USGS global reference database, we assessed errors of spectral unmixing classification of ALOS AVNIR-2 data into 4 land cover classes. Results yield a spatial surface of local errors by the Aitchison distance and address that the error magnitude across space is associated with the complexity of land covers.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Geographically Weighted Total Composite Error Analysis for Soft Classification
Errors in land cover classification are often spatially heterogeneous even though a soft classification model such as spectral unmixing is implemented to mitigate a mixed pixel problem. The estimated land covers are fractions of targeted classes with the restriction of the sum to one and being non-negative. To assess the classification with considering a spatial heterogeneity, we propose a geographically weighted total composite error analysis. By using the USGS global reference database, we assessed errors of spectral unmixing classification of ALOS AVNIR-2 data into 4 land cover classes. Results yield a spatial surface of local errors by the Aitchison distance and address that the error magnitude across space is associated with the complexity of land covers.