{"title":"无线传感器网络中GPS长期跟踪的自适应阈值触发","authors":"Llewyn Salt, B. Kusy, R. Jurdak","doi":"10.1109/SOCPAR.2015.7492827","DOIUrl":null,"url":null,"abstract":"Long-term tracking is an expanding field with applications in logistics, ecology and wearable computing. The main challenge for longevity of tracking applications is the high energy consumption of GPS, which has been addressed by using low power sensors to trigger GPS activation upon detecting events of interest. While triggering can reduce power consumption, static thresholds can underperform in the longterm as context changes. This paper presents an auto-covariance based triggering algorithm that adapts trigger thresholds based on the incoming data and is effective with limited prior knowledge. We test the algorithm on empirical data from flying foxes and show that it outperforms static thresholding and existing adaptive algorithms from the literature.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive threshold triggering of GPS for long-term tracking in WSN\",\"authors\":\"Llewyn Salt, B. Kusy, R. Jurdak\",\"doi\":\"10.1109/SOCPAR.2015.7492827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term tracking is an expanding field with applications in logistics, ecology and wearable computing. The main challenge for longevity of tracking applications is the high energy consumption of GPS, which has been addressed by using low power sensors to trigger GPS activation upon detecting events of interest. While triggering can reduce power consumption, static thresholds can underperform in the longterm as context changes. This paper presents an auto-covariance based triggering algorithm that adapts trigger thresholds based on the incoming data and is effective with limited prior knowledge. We test the algorithm on empirical data from flying foxes and show that it outperforms static thresholding and existing adaptive algorithms from the literature.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive threshold triggering of GPS for long-term tracking in WSN
Long-term tracking is an expanding field with applications in logistics, ecology and wearable computing. The main challenge for longevity of tracking applications is the high energy consumption of GPS, which has been addressed by using low power sensors to trigger GPS activation upon detecting events of interest. While triggering can reduce power consumption, static thresholds can underperform in the longterm as context changes. This paper presents an auto-covariance based triggering algorithm that adapts trigger thresholds based on the incoming data and is effective with limited prior knowledge. We test the algorithm on empirical data from flying foxes and show that it outperforms static thresholding and existing adaptive algorithms from the literature.