{"title":"集成神经网络和基于知识的机器人控制系统","authors":"D. Handelman, S. Lane, J. Gelfand","doi":"10.1109/ROBOT.1989.100184","DOIUrl":null,"url":null,"abstract":"The authors address the issue of integrating both computational paradigms for the purpose of robotic manipulation. The control task chosen to demonstrate the integration technique involves teaching a two-link manipulator how to make a tennis-like swing. A three-level task hierarchy is defined consisting of low-level reflexes, reflex modulators, and an execution monitor. The rule-based execution monitor first determines how to make a successful swing using rules alone. It then teaches a neural network how to accomplish the task by having it observe rule-based task execution. Following initial training, the execution monitor continuously evaluates neural network performance and re-engages swing-maneuver rules whenever changes in the manipulator or its operating environment necessitate retraining of the network. Simulation results show the interaction between rule-based and network-based system components during various phases of training and supervision.<<ETX>>","PeriodicalId":114394,"journal":{"name":"Proceedings, 1989 International Conference on Robotics and Automation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Integrating neural networks and knowledge-based systems for robotic control\",\"authors\":\"D. Handelman, S. Lane, J. Gelfand\",\"doi\":\"10.1109/ROBOT.1989.100184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors address the issue of integrating both computational paradigms for the purpose of robotic manipulation. The control task chosen to demonstrate the integration technique involves teaching a two-link manipulator how to make a tennis-like swing. A three-level task hierarchy is defined consisting of low-level reflexes, reflex modulators, and an execution monitor. The rule-based execution monitor first determines how to make a successful swing using rules alone. It then teaches a neural network how to accomplish the task by having it observe rule-based task execution. Following initial training, the execution monitor continuously evaluates neural network performance and re-engages swing-maneuver rules whenever changes in the manipulator or its operating environment necessitate retraining of the network. Simulation results show the interaction between rule-based and network-based system components during various phases of training and supervision.<<ETX>>\",\"PeriodicalId\":114394,\"journal\":{\"name\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1989.100184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, 1989 International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1989.100184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating neural networks and knowledge-based systems for robotic control
The authors address the issue of integrating both computational paradigms for the purpose of robotic manipulation. The control task chosen to demonstrate the integration technique involves teaching a two-link manipulator how to make a tennis-like swing. A three-level task hierarchy is defined consisting of low-level reflexes, reflex modulators, and an execution monitor. The rule-based execution monitor first determines how to make a successful swing using rules alone. It then teaches a neural network how to accomplish the task by having it observe rule-based task execution. Following initial training, the execution monitor continuously evaluates neural network performance and re-engages swing-maneuver rules whenever changes in the manipulator or its operating environment necessitate retraining of the network. Simulation results show the interaction between rule-based and network-based system components during various phases of training and supervision.<>