{"title":"C和汇编程序信息流安全性的端到端验证","authors":"D. Costanzo, Zhong Shao, Ronghui Gu","doi":"10.1145/2908080.2908100","DOIUrl":null,"url":null,"abstract":"Protecting the confidentiality of information manipulated by a computing system is one of the most important challenges facing today's cybersecurity community. A promising step toward conquering this challenge is to formally verify that the end-to-end behavior of the computing system really satisfies various information-flow policies. Unfortunately, because today's system software still consists of both C and assembly programs, the end-to-end verification necessarily requires that we not only prove the security properties of individual components, but also carefully preserve these properties through compilation and cross-language linking. In this paper, we present a novel methodology for formally verifying end-to-end security of a software system that consists of both C and assembly programs. We introduce a general definition of observation function that unifies the concepts of policy specification, state indistinguishability, and whole-execution behaviors. We show how to use different observation functions for different levels of abstraction, and how to link different security proofs across abstraction levels using a special kind of simulation that is guaranteed to preserve state indistinguishability. To demonstrate the effectiveness of our new methodology, we have successfully constructed an end-to-end security proof, fully formalized in the Coq proof assistant, of a nontrivial operating system kernel (running on an extended CompCert x86 assembly machine model). Some parts of the kernel are written in C and some are written in assembly; we verify all of the code, regardless of language.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"End-to-end verification of information-flow security for C and assembly programs\",\"authors\":\"D. Costanzo, Zhong Shao, Ronghui Gu\",\"doi\":\"10.1145/2908080.2908100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protecting the confidentiality of information manipulated by a computing system is one of the most important challenges facing today's cybersecurity community. A promising step toward conquering this challenge is to formally verify that the end-to-end behavior of the computing system really satisfies various information-flow policies. Unfortunately, because today's system software still consists of both C and assembly programs, the end-to-end verification necessarily requires that we not only prove the security properties of individual components, but also carefully preserve these properties through compilation and cross-language linking. In this paper, we present a novel methodology for formally verifying end-to-end security of a software system that consists of both C and assembly programs. We introduce a general definition of observation function that unifies the concepts of policy specification, state indistinguishability, and whole-execution behaviors. We show how to use different observation functions for different levels of abstraction, and how to link different security proofs across abstraction levels using a special kind of simulation that is guaranteed to preserve state indistinguishability. To demonstrate the effectiveness of our new methodology, we have successfully constructed an end-to-end security proof, fully formalized in the Coq proof assistant, of a nontrivial operating system kernel (running on an extended CompCert x86 assembly machine model). Some parts of the kernel are written in C and some are written in assembly; we verify all of the code, regardless of language.\",\"PeriodicalId\":178839,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2908080.2908100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2908080.2908100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-end verification of information-flow security for C and assembly programs
Protecting the confidentiality of information manipulated by a computing system is one of the most important challenges facing today's cybersecurity community. A promising step toward conquering this challenge is to formally verify that the end-to-end behavior of the computing system really satisfies various information-flow policies. Unfortunately, because today's system software still consists of both C and assembly programs, the end-to-end verification necessarily requires that we not only prove the security properties of individual components, but also carefully preserve these properties through compilation and cross-language linking. In this paper, we present a novel methodology for formally verifying end-to-end security of a software system that consists of both C and assembly programs. We introduce a general definition of observation function that unifies the concepts of policy specification, state indistinguishability, and whole-execution behaviors. We show how to use different observation functions for different levels of abstraction, and how to link different security proofs across abstraction levels using a special kind of simulation that is guaranteed to preserve state indistinguishability. To demonstrate the effectiveness of our new methodology, we have successfully constructed an end-to-end security proof, fully formalized in the Coq proof assistant, of a nontrivial operating system kernel (running on an extended CompCert x86 assembly machine model). Some parts of the kernel are written in C and some are written in assembly; we verify all of the code, regardless of language.