{"title":"基于斐波那契序列的个性化网页排名","authors":"HongJun Yin, Jing Li, Yue Niu","doi":"10.1109/ICICS.2013.6782908","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast MPI algorithm for Monte Carlo approximation PageRank vector of all the nodes in a graph, named Fast Fibonacci Series-Based Personal PageRank. In the latter paper we will call it FFSB algorithm for short. The basic ideal is very efficiently computing single random walks of a given length starting at each node in a graph. More precisely, we design FFSB, which given a graph G and a length λ, outputs a single random walk of length λ at each node in G. We will exhibit that the number of MPI iterations and machine time is better than the most efficient algorithm at present with machine time log2 λ (λ is the given walk length). The algorithm with the complexity 0.72022 × log2 λ × (g + max {L + 2 × o, 2 × g}) is optimal among a broad family of algorithms for the problem. Also the empirical evaluation on real-life graph data crawled from Sina micro blog demonstrates that our algorithm is significantly more efficient than all the existing candidates in production parallel programing environment MPI.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FFSB: Fast Fibonacci Series-Based personalized PageRank on MPI\",\"authors\":\"HongJun Yin, Jing Li, Yue Niu\",\"doi\":\"10.1109/ICICS.2013.6782908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a fast MPI algorithm for Monte Carlo approximation PageRank vector of all the nodes in a graph, named Fast Fibonacci Series-Based Personal PageRank. In the latter paper we will call it FFSB algorithm for short. The basic ideal is very efficiently computing single random walks of a given length starting at each node in a graph. More precisely, we design FFSB, which given a graph G and a length λ, outputs a single random walk of length λ at each node in G. We will exhibit that the number of MPI iterations and machine time is better than the most efficient algorithm at present with machine time log2 λ (λ is the given walk length). The algorithm with the complexity 0.72022 × log2 λ × (g + max {L + 2 × o, 2 × g}) is optimal among a broad family of algorithms for the problem. Also the empirical evaluation on real-life graph data crawled from Sina micro blog demonstrates that our algorithm is significantly more efficient than all the existing candidates in production parallel programing environment MPI.\",\"PeriodicalId\":184544,\"journal\":{\"name\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"volume\":\"328 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2013.6782908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在本文中,我们提出了一种快速的MPI算法,用于蒙特卡罗逼近图中所有节点的PageRank向量,称为fast Fibonacci seriesbased Personal PageRank。在后一篇文章中,我们将其简称为FFSB算法。基本理想是非常有效地计算从图中的每个节点开始的给定长度的单个随机行走。更准确地说,我们设计了FFSB,给定一个图G和一个长度λ,在G中的每个节点上输出一个长度为λ的随机漫步。我们将证明MPI迭代次数和机器时间优于目前最有效的算法,机器时间为log2 λ (λ为给定的行走长度)。复杂度为0.72022 × log2 λ × (g + max {L + 2 × o, 2 × g})的算法是解决该问题的众多算法中的最优算法。此外,对从新浪微博抓取的真实图形数据的实证评估表明,我们的算法比生产并行编程环境MPI中现有的所有候选算法都要高效得多。
FFSB: Fast Fibonacci Series-Based personalized PageRank on MPI
In this paper, we propose a fast MPI algorithm for Monte Carlo approximation PageRank vector of all the nodes in a graph, named Fast Fibonacci Series-Based Personal PageRank. In the latter paper we will call it FFSB algorithm for short. The basic ideal is very efficiently computing single random walks of a given length starting at each node in a graph. More precisely, we design FFSB, which given a graph G and a length λ, outputs a single random walk of length λ at each node in G. We will exhibit that the number of MPI iterations and machine time is better than the most efficient algorithm at present with machine time log2 λ (λ is the given walk length). The algorithm with the complexity 0.72022 × log2 λ × (g + max {L + 2 × o, 2 × g}) is optimal among a broad family of algorithms for the problem. Also the empirical evaluation on real-life graph data crawled from Sina micro blog demonstrates that our algorithm is significantly more efficient than all the existing candidates in production parallel programing environment MPI.