Gunho Lee, N. Tolia, Parthasarathy Ranganathan, R. Katz
{"title":"面向数据密集型工作负载的拓扑感知资源分配","authors":"Gunho Lee, N. Tolia, Parthasarathy Ranganathan, R. Katz","doi":"10.1145/1851276.1851278","DOIUrl":null,"url":null,"abstract":"This paper proposes an architecture for optimized resource allocation in Infrastructure-as-a-Service (IaaS)-based cloud systems. Current IaaS systems are usually unaware of the hosted application's requirements and therefore allocate resources independently of its needs, which can significantly impact performance for distributed data-intensive applications. To address this resource allocation problem, we propose an architecture that adopts a \"what if\" methodology to guide allocation decisions taken by the IaaS. The architecture uses a prediction engine with a lightweight simulator to estimate the performance of a given resource allocation and a genetic algorithm to find an optimized solution in the large search space. We have built a prototype for Topology-Aware Resource Allocation (TARA) and evaluated it on a 80 server cluster with two representative MapReduce-based benchmarks. Our results show that TARA reduces the job completion time of these applications by up to 59% when compared to application-independent allocation policies.","PeriodicalId":202924,"journal":{"name":"Asia Pacific Workshop on Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"Topology-aware resource allocation for data-intensive workloads\",\"authors\":\"Gunho Lee, N. Tolia, Parthasarathy Ranganathan, R. Katz\",\"doi\":\"10.1145/1851276.1851278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an architecture for optimized resource allocation in Infrastructure-as-a-Service (IaaS)-based cloud systems. Current IaaS systems are usually unaware of the hosted application's requirements and therefore allocate resources independently of its needs, which can significantly impact performance for distributed data-intensive applications. To address this resource allocation problem, we propose an architecture that adopts a \\\"what if\\\" methodology to guide allocation decisions taken by the IaaS. The architecture uses a prediction engine with a lightweight simulator to estimate the performance of a given resource allocation and a genetic algorithm to find an optimized solution in the large search space. We have built a prototype for Topology-Aware Resource Allocation (TARA) and evaluated it on a 80 server cluster with two representative MapReduce-based benchmarks. Our results show that TARA reduces the job completion time of these applications by up to 59% when compared to application-independent allocation policies.\",\"PeriodicalId\":202924,\"journal\":{\"name\":\"Asia Pacific Workshop on Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pacific Workshop on Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1851276.1851278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pacific Workshop on Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1851276.1851278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topology-aware resource allocation for data-intensive workloads
This paper proposes an architecture for optimized resource allocation in Infrastructure-as-a-Service (IaaS)-based cloud systems. Current IaaS systems are usually unaware of the hosted application's requirements and therefore allocate resources independently of its needs, which can significantly impact performance for distributed data-intensive applications. To address this resource allocation problem, we propose an architecture that adopts a "what if" methodology to guide allocation decisions taken by the IaaS. The architecture uses a prediction engine with a lightweight simulator to estimate the performance of a given resource allocation and a genetic algorithm to find an optimized solution in the large search space. We have built a prototype for Topology-Aware Resource Allocation (TARA) and evaluated it on a 80 server cluster with two representative MapReduce-based benchmarks. Our results show that TARA reduces the job completion time of these applications by up to 59% when compared to application-independent allocation policies.