面向数据密集型工作负载的拓扑感知资源分配

Gunho Lee, N. Tolia, Parthasarathy Ranganathan, R. Katz
{"title":"面向数据密集型工作负载的拓扑感知资源分配","authors":"Gunho Lee, N. Tolia, Parthasarathy Ranganathan, R. Katz","doi":"10.1145/1851276.1851278","DOIUrl":null,"url":null,"abstract":"This paper proposes an architecture for optimized resource allocation in Infrastructure-as-a-Service (IaaS)-based cloud systems. Current IaaS systems are usually unaware of the hosted application's requirements and therefore allocate resources independently of its needs, which can significantly impact performance for distributed data-intensive applications. To address this resource allocation problem, we propose an architecture that adopts a \"what if\" methodology to guide allocation decisions taken by the IaaS. The architecture uses a prediction engine with a lightweight simulator to estimate the performance of a given resource allocation and a genetic algorithm to find an optimized solution in the large search space. We have built a prototype for Topology-Aware Resource Allocation (TARA) and evaluated it on a 80 server cluster with two representative MapReduce-based benchmarks. Our results show that TARA reduces the job completion time of these applications by up to 59% when compared to application-independent allocation policies.","PeriodicalId":202924,"journal":{"name":"Asia Pacific Workshop on Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"Topology-aware resource allocation for data-intensive workloads\",\"authors\":\"Gunho Lee, N. Tolia, Parthasarathy Ranganathan, R. Katz\",\"doi\":\"10.1145/1851276.1851278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an architecture for optimized resource allocation in Infrastructure-as-a-Service (IaaS)-based cloud systems. Current IaaS systems are usually unaware of the hosted application's requirements and therefore allocate resources independently of its needs, which can significantly impact performance for distributed data-intensive applications. To address this resource allocation problem, we propose an architecture that adopts a \\\"what if\\\" methodology to guide allocation decisions taken by the IaaS. The architecture uses a prediction engine with a lightweight simulator to estimate the performance of a given resource allocation and a genetic algorithm to find an optimized solution in the large search space. We have built a prototype for Topology-Aware Resource Allocation (TARA) and evaluated it on a 80 server cluster with two representative MapReduce-based benchmarks. Our results show that TARA reduces the job completion time of these applications by up to 59% when compared to application-independent allocation policies.\",\"PeriodicalId\":202924,\"journal\":{\"name\":\"Asia Pacific Workshop on Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pacific Workshop on Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1851276.1851278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pacific Workshop on Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1851276.1851278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

摘要

本文提出了一种基于基础设施即服务(IaaS)的云系统中优化资源分配的体系结构。当前的IaaS系统通常不知道托管应用程序的需求,因此独立于其需求分配资源,这可能会严重影响分布式数据密集型应用程序的性能。为了解决这个资源分配问题,我们提出了一个架构,该架构采用“假设”方法来指导IaaS所做的分配决策。该体系结构使用带有轻量级模拟器的预测引擎来估计给定资源分配的性能,并使用遗传算法在大型搜索空间中找到优化的解决方案。我们已经为拓扑感知资源分配(TARA)构建了一个原型,并在一个80台服务器集群上使用两个代表性的基于mapreduce的基准测试对其进行了评估。我们的结果表明,与独立于应用程序的分配策略相比,TARA将这些应用程序的作业完成时间减少了59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology-aware resource allocation for data-intensive workloads
This paper proposes an architecture for optimized resource allocation in Infrastructure-as-a-Service (IaaS)-based cloud systems. Current IaaS systems are usually unaware of the hosted application's requirements and therefore allocate resources independently of its needs, which can significantly impact performance for distributed data-intensive applications. To address this resource allocation problem, we propose an architecture that adopts a "what if" methodology to guide allocation decisions taken by the IaaS. The architecture uses a prediction engine with a lightweight simulator to estimate the performance of a given resource allocation and a genetic algorithm to find an optimized solution in the large search space. We have built a prototype for Topology-Aware Resource Allocation (TARA) and evaluated it on a 80 server cluster with two representative MapReduce-based benchmarks. Our results show that TARA reduces the job completion time of these applications by up to 59% when compared to application-independent allocation policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信