{"title":"分数阶系统辨识的一种算法","authors":"Xixiao Liu, Guishu Liang","doi":"10.1109/CSE.2014.46","DOIUrl":null,"url":null,"abstract":"In this paper, a new algorithm for fractional order system identification is set up. We study the structure of vector fitting and give a decomposition through the computational instance. In the vector fitting method, we use the complex least-square method to instead least-square method when calculating the residues and dealing with the errors based on vector fitting. And the rational fractional function has been extended from integer field to fractional domain. For validity, a comparison between the original and the present method is conducted.","PeriodicalId":258990,"journal":{"name":"2014 IEEE 17th International Conference on Computational Science and Engineering","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Algorithm for Fractional Order System Identification\",\"authors\":\"Xixiao Liu, Guishu Liang\",\"doi\":\"10.1109/CSE.2014.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new algorithm for fractional order system identification is set up. We study the structure of vector fitting and give a decomposition through the computational instance. In the vector fitting method, we use the complex least-square method to instead least-square method when calculating the residues and dealing with the errors based on vector fitting. And the rational fractional function has been extended from integer field to fractional domain. For validity, a comparison between the original and the present method is conducted.\",\"PeriodicalId\":258990,\"journal\":{\"name\":\"2014 IEEE 17th International Conference on Computational Science and Engineering\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 17th International Conference on Computational Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSE.2014.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 17th International Conference on Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE.2014.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Algorithm for Fractional Order System Identification
In this paper, a new algorithm for fractional order system identification is set up. We study the structure of vector fitting and give a decomposition through the computational instance. In the vector fitting method, we use the complex least-square method to instead least-square method when calculating the residues and dealing with the errors based on vector fitting. And the rational fractional function has been extended from integer field to fractional domain. For validity, a comparison between the original and the present method is conducted.