旋转液体射流冲击冷却系统的传热

Qi Lu, S. Parameswaran, B. Ren
{"title":"旋转液体射流冲击冷却系统的传热","authors":"Qi Lu, S. Parameswaran, B. Ren","doi":"10.1115/IMECE2018-88377","DOIUrl":null,"url":null,"abstract":"The circular, liquid jet impingement provides a convenient way of cooling surfaces. To effectively cool the devices inside the electric vehicle, a rotating jet impingement cooling system is designed to evaluate the potential of the jet impingement for high heat flux removal. The liquid used for jet impingement is automatic transmission fluid. The jet impingement system consists of a rotating pipe with two nozzles and a cylindrical ring which is attached to the heat source. To reduce the computational loads, first, the CFD simulation for a laminar flow inside the pipe is carried out to estimate the flow velocities at the nozzle exits. Then, the rotating jet impingement cooling of a cylinder with a uniform surface temperature is investigated numerically for stable, unsubmerged, uniform velocity, single phase laminar jets. The numerical simulation using the commercial code is performed to determine the heat flux removal performance over the cylindrical surface. The numerical results are compared with the empirical formula and experimental measurements from the literature. Furthermore, the effects of the Reynolds number and pipe rotation on the jet impingement cooling performance are also investigated.","PeriodicalId":307820,"journal":{"name":"Volume 8B: Heat Transfer and Thermal Engineering","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heat Transfer by a Rotating Liquid Jet Impingement Cooling System\",\"authors\":\"Qi Lu, S. Parameswaran, B. Ren\",\"doi\":\"10.1115/IMECE2018-88377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The circular, liquid jet impingement provides a convenient way of cooling surfaces. To effectively cool the devices inside the electric vehicle, a rotating jet impingement cooling system is designed to evaluate the potential of the jet impingement for high heat flux removal. The liquid used for jet impingement is automatic transmission fluid. The jet impingement system consists of a rotating pipe with two nozzles and a cylindrical ring which is attached to the heat source. To reduce the computational loads, first, the CFD simulation for a laminar flow inside the pipe is carried out to estimate the flow velocities at the nozzle exits. Then, the rotating jet impingement cooling of a cylinder with a uniform surface temperature is investigated numerically for stable, unsubmerged, uniform velocity, single phase laminar jets. The numerical simulation using the commercial code is performed to determine the heat flux removal performance over the cylindrical surface. The numerical results are compared with the empirical formula and experimental measurements from the literature. Furthermore, the effects of the Reynolds number and pipe rotation on the jet impingement cooling performance are also investigated.\",\"PeriodicalId\":307820,\"journal\":{\"name\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"volume\":\"369 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-88377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-88377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

圆形的液体射流撞击提供了一种方便的冷却表面的方法。为了有效冷却电动汽车内部装置,设计了旋转射流冲击冷却系统,以评估射流冲击去除高热流密度的潜力。用于喷射撞击的液体是自动传动液。射流冲击系统由一个带有两个喷嘴的旋转管和一个附着在热源上的圆柱形环组成。为了减少计算量,首先对管道内层流进行CFD模拟,估算喷嘴出口处的流动速度。在此基础上,对稳定、非浸没、匀速、单相层流射流在均匀表面温度下的旋转射流冲击冷却进行了数值研究。利用商业代码进行了数值模拟,以确定圆柱表面上的热流通量去除性能。数值计算结果与经验公式和实验测量结果进行了比较。此外,还研究了雷诺数和管道旋转对射流冲击冷却性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat Transfer by a Rotating Liquid Jet Impingement Cooling System
The circular, liquid jet impingement provides a convenient way of cooling surfaces. To effectively cool the devices inside the electric vehicle, a rotating jet impingement cooling system is designed to evaluate the potential of the jet impingement for high heat flux removal. The liquid used for jet impingement is automatic transmission fluid. The jet impingement system consists of a rotating pipe with two nozzles and a cylindrical ring which is attached to the heat source. To reduce the computational loads, first, the CFD simulation for a laminar flow inside the pipe is carried out to estimate the flow velocities at the nozzle exits. Then, the rotating jet impingement cooling of a cylinder with a uniform surface temperature is investigated numerically for stable, unsubmerged, uniform velocity, single phase laminar jets. The numerical simulation using the commercial code is performed to determine the heat flux removal performance over the cylindrical surface. The numerical results are compared with the empirical formula and experimental measurements from the literature. Furthermore, the effects of the Reynolds number and pipe rotation on the jet impingement cooling performance are also investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信