数据流图中的节点预取预测

N.G. Petersen, M. R. Wójcik
{"title":"数据流图中的节点预取预测","authors":"N.G. Petersen, M. R. Wójcik","doi":"10.1109/SIPS.2004.1363068","DOIUrl":null,"url":null,"abstract":"Dataflow languages provide a high-level description that can expose inherent parallelism in many applications. This high level description can be applied to automatically create efficient code and schedules based on patterns in the dataflow graphs and knowledge of the target architecture. When targeting a dataflow graph to custom hardware, it is sometimes advantageous to share nodes with similar functionality to save silicon. Any state information associated with the caller of the shared node must be stored and subsequently loaded upon firing. If prediction logic can predict which caller of a shared node is next, the associated state information can be prefetched while other nodes of the graph are executing. While some applications can be entirely scheduled at compile time, many multi- channel measurement and control applications require some degree of dynamic scheduling. This paper's key contribution is a lightweight call prediction unit with 100% prediction accuracy given a runtime-determined periodic calling schedule. While applications are varied, we show a 33% speedup in a filtering application possible in wireless ad hoc networks.","PeriodicalId":384858,"journal":{"name":"IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Node prefetch prediction in dataflow graphs\",\"authors\":\"N.G. Petersen, M. R. Wójcik\",\"doi\":\"10.1109/SIPS.2004.1363068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dataflow languages provide a high-level description that can expose inherent parallelism in many applications. This high level description can be applied to automatically create efficient code and schedules based on patterns in the dataflow graphs and knowledge of the target architecture. When targeting a dataflow graph to custom hardware, it is sometimes advantageous to share nodes with similar functionality to save silicon. Any state information associated with the caller of the shared node must be stored and subsequently loaded upon firing. If prediction logic can predict which caller of a shared node is next, the associated state information can be prefetched while other nodes of the graph are executing. While some applications can be entirely scheduled at compile time, many multi- channel measurement and control applications require some degree of dynamic scheduling. This paper's key contribution is a lightweight call prediction unit with 100% prediction accuracy given a runtime-determined periodic calling schedule. While applications are varied, we show a 33% speedup in a filtering application possible in wireless ad hoc networks.\",\"PeriodicalId\":384858,\"journal\":{\"name\":\"IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2004.1363068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2004.1363068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据流语言提供了一种高级描述,可以在许多应用程序中公开固有的并行性。这种高级描述可以应用于根据数据流图中的模式和目标体系结构的知识自动创建高效的代码和调度。当将数据流图定位于定制硬件时,共享具有类似功能的节点以节省芯片有时是有利的。必须存储与共享节点的调用方相关联的任何状态信息,并随后在触发时加载。如果预测逻辑可以预测共享节点的下一个调用者,则可以在图的其他节点执行时预取相关的状态信息。虽然有些应用程序可以在编译时完全调度,但许多多通道测量和控制应用程序需要一定程度的动态调度。本文的主要贡献是一个轻量级的调用预测单元,在给定运行时确定的周期性调用计划的情况下,该单元的预测精度为100%。虽然应用程序各不相同,但我们展示了在无线自组织网络中可能的过滤应用程序中的33%加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Node prefetch prediction in dataflow graphs
Dataflow languages provide a high-level description that can expose inherent parallelism in many applications. This high level description can be applied to automatically create efficient code and schedules based on patterns in the dataflow graphs and knowledge of the target architecture. When targeting a dataflow graph to custom hardware, it is sometimes advantageous to share nodes with similar functionality to save silicon. Any state information associated with the caller of the shared node must be stored and subsequently loaded upon firing. If prediction logic can predict which caller of a shared node is next, the associated state information can be prefetched while other nodes of the graph are executing. While some applications can be entirely scheduled at compile time, many multi- channel measurement and control applications require some degree of dynamic scheduling. This paper's key contribution is a lightweight call prediction unit with 100% prediction accuracy given a runtime-determined periodic calling schedule. While applications are varied, we show a 33% speedup in a filtering application possible in wireless ad hoc networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信