自动链接GermaNet到维基百科,用于收集GermaNet感官的语料库示例

Verena Henrich, E. Hinrichs, Klaus Suttner
{"title":"自动链接GermaNet到维基百科,用于收集GermaNet感官的语料库示例","authors":"Verena Henrich, E. Hinrichs, Klaus Suttner","doi":"10.21248/jlcl.27.2012.156","DOIUrl":null,"url":null,"abstract":"The comprehension of a word sense is much easier when its usages are illustrated by example sentences in linguistic contexts. Hence, examples are crucially important to better understand the sense of a word in a dictionary. The goal of this research is the semi-automatic enrichment of senses from the German wordnet GermaNet with corpus examples from the online encyclopedia Wikipedia. The paper describes the automatic mapping of GermaNet senses to Wikipedia articles, using proven, state-ofthe-art word sense disambiguation methods, in particular different versions of word overlap algorithms and PageRank as well as classifiers that combine these methods. This mapping is optimized for precision and then used to automatically harvest corpus examples from Wikipedia for GermaNet senses. The paper presents details about the optimization of the model for the GermaNet-Wikipedia mapping and concludes with a detailed evaluation of the quantity and quality of the harvested examples. Apart from enriching the GermaNet resource, the harvested corpus examples can also be used to construct a corpus of German nouns that are annotated with GermaNet senses. This sense-annotated corpus can be used for a wide range of NLP applications.","PeriodicalId":402489,"journal":{"name":"J. Lang. Technol. Comput. Linguistics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Automatically Linking GermaNet to Wikipedia for Harvesting Corpus Examples for GermaNet Senses\",\"authors\":\"Verena Henrich, E. Hinrichs, Klaus Suttner\",\"doi\":\"10.21248/jlcl.27.2012.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The comprehension of a word sense is much easier when its usages are illustrated by example sentences in linguistic contexts. Hence, examples are crucially important to better understand the sense of a word in a dictionary. The goal of this research is the semi-automatic enrichment of senses from the German wordnet GermaNet with corpus examples from the online encyclopedia Wikipedia. The paper describes the automatic mapping of GermaNet senses to Wikipedia articles, using proven, state-ofthe-art word sense disambiguation methods, in particular different versions of word overlap algorithms and PageRank as well as classifiers that combine these methods. This mapping is optimized for precision and then used to automatically harvest corpus examples from Wikipedia for GermaNet senses. The paper presents details about the optimization of the model for the GermaNet-Wikipedia mapping and concludes with a detailed evaluation of the quantity and quality of the harvested examples. Apart from enriching the GermaNet resource, the harvested corpus examples can also be used to construct a corpus of German nouns that are annotated with GermaNet senses. This sense-annotated corpus can be used for a wide range of NLP applications.\",\"PeriodicalId\":402489,\"journal\":{\"name\":\"J. Lang. Technol. Comput. Linguistics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Lang. Technol. Comput. Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.27.2012.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Lang. Technol. Comput. Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.27.2012.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

如果在语言语境中用例句来说明词义的用法,理解词义就容易得多。因此,举例对于更好地理解字典中单词的含义至关重要。本研究的目标是用在线百科全书维基百科的语料库实例半自动地丰富德语wordnet GermaNet中的感官。本文描述了德语语义到维基百科文章的自动映射,使用经过验证的、最先进的词义消歧方法,特别是不同版本的词重叠算法和PageRank,以及结合这些方法的分类器。该映射优化了精度,然后用于从维基百科中自动获取语料库示例。本文详细介绍了德国-维基百科映射模型的优化,并对收获的示例的数量和质量进行了详细的评估。除了丰富德语语料库资源外,收集到的语料库实例还可以用来构建一个德语名词语料库,并用德语语料库的意义进行注释。这个语义注释的语料库可以用于广泛的自然语言处理应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatically Linking GermaNet to Wikipedia for Harvesting Corpus Examples for GermaNet Senses
The comprehension of a word sense is much easier when its usages are illustrated by example sentences in linguistic contexts. Hence, examples are crucially important to better understand the sense of a word in a dictionary. The goal of this research is the semi-automatic enrichment of senses from the German wordnet GermaNet with corpus examples from the online encyclopedia Wikipedia. The paper describes the automatic mapping of GermaNet senses to Wikipedia articles, using proven, state-ofthe-art word sense disambiguation methods, in particular different versions of word overlap algorithms and PageRank as well as classifiers that combine these methods. This mapping is optimized for precision and then used to automatically harvest corpus examples from Wikipedia for GermaNet senses. The paper presents details about the optimization of the model for the GermaNet-Wikipedia mapping and concludes with a detailed evaluation of the quantity and quality of the harvested examples. Apart from enriching the GermaNet resource, the harvested corpus examples can also be used to construct a corpus of German nouns that are annotated with GermaNet senses. This sense-annotated corpus can be used for a wide range of NLP applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信