以资源为中心的计算,提供高并行性能

J. Gustedt, S. Vialle, P. Mercier
{"title":"以资源为中心的计算,提供高并行性能","authors":"J. Gustedt, S. Vialle, P. Mercier","doi":"10.1109/IPDPSW.2014.14","DOIUrl":null,"url":null,"abstract":"Modern parallel programming requires a combination of different paradigms, expertise and tuning, that correspond to the different levels in today's hierarchical architectures. To cope with the inherent difficulty, ORWL (ordered read-write locks) presents a new paradigm and toolbox centered around local or remote resources, such as data, processors or accelerators. ORWL programmers describe their computation in terms of access to these resources during critical sections. Exclusive or shared access to the resources is granted through FIFOs and with read-write semantic. ORWL partially replaces a classical runtime and offers a new API for resource centric parallel programming. We successfully ran an ORWL benchmark application on different parallel architectures (a multicore CPU cluster, a NUMA machine, a CPU+GPU cluster). When processing large data we achieved scalability and performance similar to a reference code built on top of MPI+OpenMP+CUDA. The integration of optimized kernels of scientific computing libraries (ATLAS and cuBLAS) has been almost effortless, and we were able to increase performance using both CPU and GPU cores on our hybrid hierarchical cluster simultaneously. We aim to make ORWL a new easy-to-use and efficient programming model and toolbox for parallel developers.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resource Centered Computing Delivering High Parallel Performance\",\"authors\":\"J. Gustedt, S. Vialle, P. Mercier\",\"doi\":\"10.1109/IPDPSW.2014.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern parallel programming requires a combination of different paradigms, expertise and tuning, that correspond to the different levels in today's hierarchical architectures. To cope with the inherent difficulty, ORWL (ordered read-write locks) presents a new paradigm and toolbox centered around local or remote resources, such as data, processors or accelerators. ORWL programmers describe their computation in terms of access to these resources during critical sections. Exclusive or shared access to the resources is granted through FIFOs and with read-write semantic. ORWL partially replaces a classical runtime and offers a new API for resource centric parallel programming. We successfully ran an ORWL benchmark application on different parallel architectures (a multicore CPU cluster, a NUMA machine, a CPU+GPU cluster). When processing large data we achieved scalability and performance similar to a reference code built on top of MPI+OpenMP+CUDA. The integration of optimized kernels of scientific computing libraries (ATLAS and cuBLAS) has been almost effortless, and we were able to increase performance using both CPU and GPU cores on our hybrid hierarchical cluster simultaneously. We aim to make ORWL a new easy-to-use and efficient programming model and toolbox for parallel developers.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现代并行编程需要结合不同的范例、专业知识和调优,以对应于当今分层体系结构中的不同层次。为了解决固有的困难,ORWL(有序读写锁)提出了一种以本地或远程资源(如数据、处理器或加速器)为中心的新范例和工具箱。ORWL程序员根据临界段期间对这些资源的访问来描述他们的计算。通过fifo和读写语义授予对资源的独占或共享访问。ORWL部分取代了传统的运行时,并为以资源为中心的并行编程提供了新的API。我们成功地在不同的并行架构(多核CPU集群、NUMA机器、CPU+GPU集群)上运行了一个ORWL基准测试应用程序。在处理大数据时,我们实现了类似于基于MPI+OpenMP+CUDA之上的参考代码的可扩展性和性能。科学计算库(ATLAS和cuBLAS)优化内核的集成几乎毫不费力,并且我们能够同时在混合分层集群上使用CPU和GPU内核来提高性能。我们的目标是使ORWL成为并行开发人员易于使用和高效的新编程模型和工具箱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource Centered Computing Delivering High Parallel Performance
Modern parallel programming requires a combination of different paradigms, expertise and tuning, that correspond to the different levels in today's hierarchical architectures. To cope with the inherent difficulty, ORWL (ordered read-write locks) presents a new paradigm and toolbox centered around local or remote resources, such as data, processors or accelerators. ORWL programmers describe their computation in terms of access to these resources during critical sections. Exclusive or shared access to the resources is granted through FIFOs and with read-write semantic. ORWL partially replaces a classical runtime and offers a new API for resource centric parallel programming. We successfully ran an ORWL benchmark application on different parallel architectures (a multicore CPU cluster, a NUMA machine, a CPU+GPU cluster). When processing large data we achieved scalability and performance similar to a reference code built on top of MPI+OpenMP+CUDA. The integration of optimized kernels of scientific computing libraries (ATLAS and cuBLAS) has been almost effortless, and we were able to increase performance using both CPU and GPU cores on our hybrid hierarchical cluster simultaneously. We aim to make ORWL a new easy-to-use and efficient programming model and toolbox for parallel developers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信