带有机械泵和热液蓄能器的两相回路的热数学模型

N.O. Borschev
{"title":"带有机械泵和热液蓄能器的两相回路的热数学模型","authors":"N.O. Borschev","doi":"10.18698/0536-1044-2023-2-73-83","DOIUrl":null,"url":null,"abstract":"Growing heat release in spacecraft accompanied by simultaneous increase in its amount set the task of developing thermal control systems using the two-phase boiling coolant. It accumulates heat in the form of latent vaporization heat making it possible to transfer much larger amount of heat per the coolant unit mass flow rate than at using a single-phase coolant. In addition, introduction of heat transfer at boiling allows maintaining the object temperature in almost the entire circuit close to the boiling temperature of the selected coolant. All heat transfer processes that occur, when the substance aggregation state changes, are much more intensive than with the conventional convective heat transfer; therefore, the mass of heat exchangers, fittings and control elements of the two-phase circuit would be significantly lower than their mass in a single-phase coolant circuit. Capillary or mechanical pumps should pump the coolant in two-phase systems to ensure the thermal regime. At high power, it is more advantageous to use the two-phase boiling coolant with a mechanical pump. Creation of thermal control systems based on the two-phase circuit should be preceded by elaboration of an adequate mathematical model of the two-phase boiling coolant. Mathematical model is proposed that could be used to analyze operation of the two-phase boiling coolant and calculate hydrodynamic, heat and mass transfer processes.","PeriodicalId":198502,"journal":{"name":"Proceedings of Higher Educational Institutions. Маchine Building","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal mathematical model of a two-phase circuit with mechanical pump and thermal hydraulic accumulator\",\"authors\":\"N.O. Borschev\",\"doi\":\"10.18698/0536-1044-2023-2-73-83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growing heat release in spacecraft accompanied by simultaneous increase in its amount set the task of developing thermal control systems using the two-phase boiling coolant. It accumulates heat in the form of latent vaporization heat making it possible to transfer much larger amount of heat per the coolant unit mass flow rate than at using a single-phase coolant. In addition, introduction of heat transfer at boiling allows maintaining the object temperature in almost the entire circuit close to the boiling temperature of the selected coolant. All heat transfer processes that occur, when the substance aggregation state changes, are much more intensive than with the conventional convective heat transfer; therefore, the mass of heat exchangers, fittings and control elements of the two-phase circuit would be significantly lower than their mass in a single-phase coolant circuit. Capillary or mechanical pumps should pump the coolant in two-phase systems to ensure the thermal regime. At high power, it is more advantageous to use the two-phase boiling coolant with a mechanical pump. Creation of thermal control systems based on the two-phase circuit should be preceded by elaboration of an adequate mathematical model of the two-phase boiling coolant. Mathematical model is proposed that could be used to analyze operation of the two-phase boiling coolant and calculate hydrodynamic, heat and mass transfer processes.\",\"PeriodicalId\":198502,\"journal\":{\"name\":\"Proceedings of Higher Educational Institutions. Маchine Building\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Higher Educational Institutions. Маchine Building\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/0536-1044-2023-2-73-83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Higher Educational Institutions. Маchine Building","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/0536-1044-2023-2-73-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着航天器放热量的不断增加,利用两相沸腾冷却剂开发热控制系统的任务迫在眉睫。它以潜在汽化热的形式积累热量,使得每单位质量流量的冷却剂比使用单相冷却剂传递更大的热量成为可能。此外,沸腾时传热的引入允许在几乎整个回路中保持物体温度接近所选冷却剂的沸腾温度。当物质聚集态发生变化时,所发生的所有换热过程都比传统的对流换热强烈得多;因此,两相回路的热交换器、配件和控制元件的质量将明显低于单相冷却剂回路的质量。毛细管泵或机械泵应泵入两相系统中的冷却剂,以确保热状态。在大功率工况下,采用两相沸腾冷却剂配机械泵更为有利。在建立基于两相回路的热控制系统之前,应该详细说明两相沸腾冷却剂的适当数学模型。提出了可用于分析两相沸腾冷却剂运行和计算流体力学、传热和传质过程的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal mathematical model of a two-phase circuit with mechanical pump and thermal hydraulic accumulator
Growing heat release in spacecraft accompanied by simultaneous increase in its amount set the task of developing thermal control systems using the two-phase boiling coolant. It accumulates heat in the form of latent vaporization heat making it possible to transfer much larger amount of heat per the coolant unit mass flow rate than at using a single-phase coolant. In addition, introduction of heat transfer at boiling allows maintaining the object temperature in almost the entire circuit close to the boiling temperature of the selected coolant. All heat transfer processes that occur, when the substance aggregation state changes, are much more intensive than with the conventional convective heat transfer; therefore, the mass of heat exchangers, fittings and control elements of the two-phase circuit would be significantly lower than their mass in a single-phase coolant circuit. Capillary or mechanical pumps should pump the coolant in two-phase systems to ensure the thermal regime. At high power, it is more advantageous to use the two-phase boiling coolant with a mechanical pump. Creation of thermal control systems based on the two-phase circuit should be preceded by elaboration of an adequate mathematical model of the two-phase boiling coolant. Mathematical model is proposed that could be used to analyze operation of the two-phase boiling coolant and calculate hydrodynamic, heat and mass transfer processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信