基于布谷鸟搜索算法的模糊推理系统的隶属函数优化及其在节假日高峰负荷预测中的应用

A. Imran, I. Robandi, F. Firdaus, R. Ruslan, M. Y. Mappeasse, M. Djalal
{"title":"基于布谷鸟搜索算法的模糊推理系统的隶属函数优化及其在节假日高峰负荷预测中的应用","authors":"A. Imran, I. Robandi, F. Firdaus, R. Ruslan, M. Y. Mappeasse, M. Djalal","doi":"10.18196/jet.v5i2.12889","DOIUrl":null,"url":null,"abstract":"This study aims to analysis peak load prediction of Indonesian national holidays for Jawa-Bali electricity system. Forecasting applied using the Fuzzy Logic System (FLS) method combined with the Cuckoo Search Algorithm (CSA). CSA is used to determine the optimal membership function in fuzzy logic. Cuckoo search algorithm has a very good performance in terms of optimization. This method is applied for short-term load estimates on holidays/special days on the Jawa-Bali electricity system, Indonesia. The study used data from daily peak loads during Indonesian national holidays in 2014 on the Jawa-Bali electricity system. The data analyzed is the daily peak load documentation data for 4 days before national holidays and during national holidays in 2014. Testing the simulation results, it was found that the Fuzzy Logic System - Cuckoo Search Algorithm (FLS-CSA) method gives good forecasting results, this is evidenced by using the mean absolute percentage error (MAPE). Forecasting results using the Cuckoo Search Algorithm (CSA) optimization method on fuzzy logic membership functions for peak loads on national holidays on the Java-Bali 500kV electrical system give satisfactory results with an average forecasting error of 1.511314562%.","PeriodicalId":402105,"journal":{"name":"Journal of Electrical Technology UMY","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Membership Function Optimization of Fuzzy Inference System Using Cuckoo Search Algorithm for Peak Load Forecasting in National Holiday\",\"authors\":\"A. Imran, I. Robandi, F. Firdaus, R. Ruslan, M. Y. Mappeasse, M. Djalal\",\"doi\":\"10.18196/jet.v5i2.12889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to analysis peak load prediction of Indonesian national holidays for Jawa-Bali electricity system. Forecasting applied using the Fuzzy Logic System (FLS) method combined with the Cuckoo Search Algorithm (CSA). CSA is used to determine the optimal membership function in fuzzy logic. Cuckoo search algorithm has a very good performance in terms of optimization. This method is applied for short-term load estimates on holidays/special days on the Jawa-Bali electricity system, Indonesia. The study used data from daily peak loads during Indonesian national holidays in 2014 on the Jawa-Bali electricity system. The data analyzed is the daily peak load documentation data for 4 days before national holidays and during national holidays in 2014. Testing the simulation results, it was found that the Fuzzy Logic System - Cuckoo Search Algorithm (FLS-CSA) method gives good forecasting results, this is evidenced by using the mean absolute percentage error (MAPE). Forecasting results using the Cuckoo Search Algorithm (CSA) optimization method on fuzzy logic membership functions for peak loads on national holidays on the Java-Bali 500kV electrical system give satisfactory results with an average forecasting error of 1.511314562%.\",\"PeriodicalId\":402105,\"journal\":{\"name\":\"Journal of Electrical Technology UMY\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Technology UMY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jet.v5i2.12889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Technology UMY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jet.v5i2.12889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在分析爪哇-巴厘电力系统印尼国定假日的高峰负荷预测。采用模糊逻辑系统(FLS)方法结合布谷鸟搜索算法(CSA)进行预测。用CSA法确定模糊逻辑中的最优隶属函数。布谷鸟搜索算法在优化方面有很好的表现。该方法适用于印度尼西亚爪哇-巴厘岛电力系统假日/特殊日子的短期负荷估计。该研究使用了2014年印尼国定假日期间爪哇-巴厘岛电力系统每日高峰负荷的数据。分析的数据为2014年国定假日前4天及国定假日期间的每日高峰负荷文件数据。通过对仿真结果的测试,发现模糊逻辑系统-布谷鸟搜索算法(FLS-CSA)方法具有良好的预测效果,这一点通过使用平均绝对百分比误差(MAPE)得到了证明。基于模糊隶属函数的布谷鸟搜索算法(CSA)优化方法对爪哇-巴厘岛500kV电力系统国定假日高峰负荷的预测结果令人满意,平均预测误差为1.511314562%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Membership Function Optimization of Fuzzy Inference System Using Cuckoo Search Algorithm for Peak Load Forecasting in National Holiday
This study aims to analysis peak load prediction of Indonesian national holidays for Jawa-Bali electricity system. Forecasting applied using the Fuzzy Logic System (FLS) method combined with the Cuckoo Search Algorithm (CSA). CSA is used to determine the optimal membership function in fuzzy logic. Cuckoo search algorithm has a very good performance in terms of optimization. This method is applied for short-term load estimates on holidays/special days on the Jawa-Bali electricity system, Indonesia. The study used data from daily peak loads during Indonesian national holidays in 2014 on the Jawa-Bali electricity system. The data analyzed is the daily peak load documentation data for 4 days before national holidays and during national holidays in 2014. Testing the simulation results, it was found that the Fuzzy Logic System - Cuckoo Search Algorithm (FLS-CSA) method gives good forecasting results, this is evidenced by using the mean absolute percentage error (MAPE). Forecasting results using the Cuckoo Search Algorithm (CSA) optimization method on fuzzy logic membership functions for peak loads on national holidays on the Java-Bali 500kV electrical system give satisfactory results with an average forecasting error of 1.511314562%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信