推荐系统中的集成学习:结合多个用户交互进行排名个性化

A. C. Fortes, M. Manzato
{"title":"推荐系统中的集成学习:结合多个用户交互进行排名个性化","authors":"A. C. Fortes, M. Manzato","doi":"10.1145/2664551.2664556","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a technique that uses multimodal interactions of users to generate a more accurate list of recommendations optimized for the user . Our approach is a response to the actual scenario on the Web which allows users to interact with the content in different ways, and thus, more information about his preferences can be obtained to improve recommendation. The proposal consists of an ensemble learning technique that combines rankings generated by unimodal recommenders based on particular interaction types. By using a combination of different types of feedback from users, we are able to provide better recommendations, as shown by our experimental evaluation.","PeriodicalId":114454,"journal":{"name":"Brazilian Symposium on Multimedia and the Web","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Ensemble Learning in Recommender Systems: Combining Multiple User Interactions for Ranking Personalization\",\"authors\":\"A. C. Fortes, M. Manzato\",\"doi\":\"10.1145/2664551.2664556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a technique that uses multimodal interactions of users to generate a more accurate list of recommendations optimized for the user . Our approach is a response to the actual scenario on the Web which allows users to interact with the content in different ways, and thus, more information about his preferences can be obtained to improve recommendation. The proposal consists of an ensemble learning technique that combines rankings generated by unimodal recommenders based on particular interaction types. By using a combination of different types of feedback from users, we are able to provide better recommendations, as shown by our experimental evaluation.\",\"PeriodicalId\":114454,\"journal\":{\"name\":\"Brazilian Symposium on Multimedia and the Web\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Symposium on Multimedia and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2664551.2664556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2664551.2664556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们提出了一种使用用户的多模态交互来生成更准确的针对用户优化的推荐列表的技术。我们的方法是对Web上的实际场景的响应,它允许用户以不同的方式与内容交互,从而可以获得有关其偏好的更多信息以改进推荐。该提案包含一个集成学习技术,该技术结合了基于特定交互类型的单模推荐器生成的排名。通过结合不同类型的用户反馈,我们能够提供更好的推荐,正如我们的实验评估所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble Learning in Recommender Systems: Combining Multiple User Interactions for Ranking Personalization
In this paper, we propose a technique that uses multimodal interactions of users to generate a more accurate list of recommendations optimized for the user . Our approach is a response to the actual scenario on the Web which allows users to interact with the content in different ways, and thus, more information about his preferences can be obtained to improve recommendation. The proposal consists of an ensemble learning technique that combines rankings generated by unimodal recommenders based on particular interaction types. By using a combination of different types of feedback from users, we are able to provide better recommendations, as shown by our experimental evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信