用于控制下肢外骨骼系统的EEG步态意向实时解码

Junhyuk Choi, Hyungmin Kim
{"title":"用于控制下肢外骨骼系统的EEG步态意向实时解码","authors":"Junhyuk Choi, Hyungmin Kim","doi":"10.1109/IWW-BCI.2019.8737311","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrate real-time gait intention recognition algorithm which can decode voluntary gait execution from electroencephalography (EEG) for controlling the lower-limb exoskeleton. EEG gait intention features were measured by Mu-band Event-Related Desynchronization (ERD) and classified. The Receiver Operating Characteristic (ROC) curve was used for clarifying the classification performance corresponding to the length of training data. We also proposed a modified threshold method for time series binary classification to minimize the false detection rate.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Real-time Decoding of EEG Gait Intention for Controlling a Lower-limb Exoskeleton System\",\"authors\":\"Junhyuk Choi, Hyungmin Kim\",\"doi\":\"10.1109/IWW-BCI.2019.8737311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we demonstrate real-time gait intention recognition algorithm which can decode voluntary gait execution from electroencephalography (EEG) for controlling the lower-limb exoskeleton. EEG gait intention features were measured by Mu-band Event-Related Desynchronization (ERD) and classified. The Receiver Operating Characteristic (ROC) curve was used for clarifying the classification performance corresponding to the length of training data. We also proposed a modified threshold method for time series binary classification to minimize the false detection rate.\",\"PeriodicalId\":345970,\"journal\":{\"name\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2019.8737311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这项研究中,我们展示了一种实时步态意图识别算法,该算法可以从脑电图(EEG)中解码自主步态执行,以控制下肢外骨骼。采用mu波段事件相关去同步(event - correlation Desynchronization, ERD)测量EEG步态意图特征并进行分类。采用受试者工作特征(Receiver Operating Characteristic, ROC)曲线来明确训练数据长度对应的分类性能。我们还提出了一种改进的时间序列二值分类阈值方法,以降低误检率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Decoding of EEG Gait Intention for Controlling a Lower-limb Exoskeleton System
In this study, we demonstrate real-time gait intention recognition algorithm which can decode voluntary gait execution from electroencephalography (EEG) for controlling the lower-limb exoskeleton. EEG gait intention features were measured by Mu-band Event-Related Desynchronization (ERD) and classified. The Receiver Operating Characteristic (ROC) curve was used for clarifying the classification performance corresponding to the length of training data. We also proposed a modified threshold method for time series binary classification to minimize the false detection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信