基于深度学习的皮肤损伤图像分类

Ahmet Furkan Sönmez, Serap Cakar, Feyza Cerezci, Muhammed Kotan, I. Delibasoglu, Guluzar Cit
{"title":"基于深度学习的皮肤损伤图像分类","authors":"Ahmet Furkan Sönmez, Serap Cakar, Feyza Cerezci, Muhammed Kotan, I. Delibasoglu, Guluzar Cit","doi":"10.35377/saucis...1314638","DOIUrl":null,"url":null,"abstract":"Skin cancer has emerged as a grave health concern leading to significant mortality rates. Diagnosis of this disease traditionally relies on specialist dermatologists who interpret dermoscopy images using the ABCD rule. However, the integration of computer-aided diagnosis technologies is gaining popularity as a means to assist clinicians in accurate skin cancer diagnosis, overcoming potential challenges associated with human error. The objective of this research is to develop a robust system for the detection of skin cancer by employing machine learning algorithms for skin lesion classification and detection. The proposed system utilizes Convolutional Neural Network (CNN), a highly accurate and efficient deep learning technique well-suited for image classification tasks. By using the power of CNN, this system effectively classifies various skin diseases in dermoscopic images associated with skin cancer The MNIST HAM10000 dataset, comprising 10015 images, serves as the foundation for this study. The dataset encompasses seven distinct skin diseases falling within the realm of skin cancer. In this study, diverse transfer learning methods were used and evaluated to enhance the performance of the system. By comparing and analyzing these approaches, the study aimed to identify the most effective strategies for accurate skin disease classification in dermoscopic images.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Classification of Dermoscopic Images for Skin Lesions\",\"authors\":\"Ahmet Furkan Sönmez, Serap Cakar, Feyza Cerezci, Muhammed Kotan, I. Delibasoglu, Guluzar Cit\",\"doi\":\"10.35377/saucis...1314638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin cancer has emerged as a grave health concern leading to significant mortality rates. Diagnosis of this disease traditionally relies on specialist dermatologists who interpret dermoscopy images using the ABCD rule. However, the integration of computer-aided diagnosis technologies is gaining popularity as a means to assist clinicians in accurate skin cancer diagnosis, overcoming potential challenges associated with human error. The objective of this research is to develop a robust system for the detection of skin cancer by employing machine learning algorithms for skin lesion classification and detection. The proposed system utilizes Convolutional Neural Network (CNN), a highly accurate and efficient deep learning technique well-suited for image classification tasks. By using the power of CNN, this system effectively classifies various skin diseases in dermoscopic images associated with skin cancer The MNIST HAM10000 dataset, comprising 10015 images, serves as the foundation for this study. The dataset encompasses seven distinct skin diseases falling within the realm of skin cancer. In this study, diverse transfer learning methods were used and evaluated to enhance the performance of the system. By comparing and analyzing these approaches, the study aimed to identify the most effective strategies for accurate skin disease classification in dermoscopic images.\",\"PeriodicalId\":257636,\"journal\":{\"name\":\"Sakarya University Journal of Computer and Information Sciences\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35377/saucis...1314638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1314638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

皮肤癌已成为一个严重的健康问题,导致很高的死亡率。这种疾病的诊断传统上依赖于使用ABCD规则解释皮肤镜图像的皮肤科专家。然而,计算机辅助诊断技术的集成作为一种帮助临床医生准确诊断皮肤癌的手段越来越受欢迎,克服了与人为错误相关的潜在挑战。本研究的目的是通过使用机器学习算法进行皮肤病变分类和检测,开发一个强大的皮肤癌检测系统。该系统利用卷积神经网络(CNN),这是一种高度准确和高效的深度学习技术,非常适合图像分类任务。该系统利用CNN的力量,有效地对与皮肤癌相关的皮肤镜图像中的各种皮肤病进行分类。MNIST HAM10000数据集包含10015张图像,是本研究的基础。该数据集包括七种属于皮肤癌范畴的不同皮肤病。本研究采用了多种迁移学习方法,并对其进行了评估,以提高系统的性能。通过比较和分析这些方法,本研究旨在确定在皮肤镜图像中准确分类皮肤病的最有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Classification of Dermoscopic Images for Skin Lesions
Skin cancer has emerged as a grave health concern leading to significant mortality rates. Diagnosis of this disease traditionally relies on specialist dermatologists who interpret dermoscopy images using the ABCD rule. However, the integration of computer-aided diagnosis technologies is gaining popularity as a means to assist clinicians in accurate skin cancer diagnosis, overcoming potential challenges associated with human error. The objective of this research is to develop a robust system for the detection of skin cancer by employing machine learning algorithms for skin lesion classification and detection. The proposed system utilizes Convolutional Neural Network (CNN), a highly accurate and efficient deep learning technique well-suited for image classification tasks. By using the power of CNN, this system effectively classifies various skin diseases in dermoscopic images associated with skin cancer The MNIST HAM10000 dataset, comprising 10015 images, serves as the foundation for this study. The dataset encompasses seven distinct skin diseases falling within the realm of skin cancer. In this study, diverse transfer learning methods were used and evaluated to enhance the performance of the system. By comparing and analyzing these approaches, the study aimed to identify the most effective strategies for accurate skin disease classification in dermoscopic images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信