基于本体的电子健康记录编码数据自然语言生成方法

Mercedes Argüello Casteleiro, J. Des, Maria Jesus Fernandez Prieto, Rogelio Perez, Stavros Lekkas
{"title":"基于本体的电子健康记录编码数据自然语言生成方法","authors":"Mercedes Argüello Casteleiro, J. Des, Maria Jesus Fernandez Prieto, Rogelio Perez, Stavros Lekkas","doi":"10.1109/EMS.2011.47","DOIUrl":null,"url":null,"abstract":"The worldwide adoption of the HL7 Clinical Document Architecture (CDA) is promoting the availability of coded data (CDA entries) within sections of clinical documents. At the moment, an increasing number of studies are investigating ways to transform the narratives of CDA documents into machine process able CDA entries. This paper addresses the reverse problem, i.e. obtaining linguistic representations (sentences) from CDA entries. The approach presented employs Natural Language Generation (NLG) techniques and deals with two major tasks: content selection and content expression. The current research proposes a formal semantic representation of CDA entries and investigates how expressive domain ontologies in OWL and SPARQL SELECT queries can contribute to NLG. To validate the proposal, the study has focused on CDA entries from the History of Present Illness sections of CDA consultation notes. The results obtained are encouraging, as the clinical narratives automatically generated from these CDA entries fulfil the clinicians' expectations.","PeriodicalId":131364,"journal":{"name":"2011 UKSim 5th European Symposium on Computer Modeling and Simulation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Ontology-Based Approach to Natural Language Generation from Coded Data in Electronic Health Records\",\"authors\":\"Mercedes Argüello Casteleiro, J. Des, Maria Jesus Fernandez Prieto, Rogelio Perez, Stavros Lekkas\",\"doi\":\"10.1109/EMS.2011.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The worldwide adoption of the HL7 Clinical Document Architecture (CDA) is promoting the availability of coded data (CDA entries) within sections of clinical documents. At the moment, an increasing number of studies are investigating ways to transform the narratives of CDA documents into machine process able CDA entries. This paper addresses the reverse problem, i.e. obtaining linguistic representations (sentences) from CDA entries. The approach presented employs Natural Language Generation (NLG) techniques and deals with two major tasks: content selection and content expression. The current research proposes a formal semantic representation of CDA entries and investigates how expressive domain ontologies in OWL and SPARQL SELECT queries can contribute to NLG. To validate the proposal, the study has focused on CDA entries from the History of Present Illness sections of CDA consultation notes. The results obtained are encouraging, as the clinical narratives automatically generated from these CDA entries fulfil the clinicians' expectations.\",\"PeriodicalId\":131364,\"journal\":{\"name\":\"2011 UKSim 5th European Symposium on Computer Modeling and Simulation\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 UKSim 5th European Symposium on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMS.2011.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 UKSim 5th European Symposium on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2011.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

HL7临床文档架构(CDA)的全球采用促进了临床文档部分内编码数据(CDA条目)的可用性。目前,越来越多的研究正在研究如何将CDA文档的叙述转换为机器可以处理的CDA条目。本文解决了相反的问题,即从CDA条目中获取语言表示(句子)。该方法采用自然语言生成(NLG)技术,处理内容选择和内容表达两个主要任务。目前的研究提出了CDA条目的形式化语义表示,并研究了OWL和SPARQL SELECT查询中的表达域本体如何有助于NLG。为了验证该建议,该研究将重点放在CDA会诊记录中当前病史部分的CDA条目上。获得的结果是令人鼓舞的,因为从这些CDA条目自动生成的临床叙述满足了临床医生的期望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ontology-Based Approach to Natural Language Generation from Coded Data in Electronic Health Records
The worldwide adoption of the HL7 Clinical Document Architecture (CDA) is promoting the availability of coded data (CDA entries) within sections of clinical documents. At the moment, an increasing number of studies are investigating ways to transform the narratives of CDA documents into machine process able CDA entries. This paper addresses the reverse problem, i.e. obtaining linguistic representations (sentences) from CDA entries. The approach presented employs Natural Language Generation (NLG) techniques and deals with two major tasks: content selection and content expression. The current research proposes a formal semantic representation of CDA entries and investigates how expressive domain ontologies in OWL and SPARQL SELECT queries can contribute to NLG. To validate the proposal, the study has focused on CDA entries from the History of Present Illness sections of CDA consultation notes. The results obtained are encouraging, as the clinical narratives automatically generated from these CDA entries fulfil the clinicians' expectations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信