高斯帕的算法,精确的求和,以及离散的牛顿-莱布尼茨公式

S. Abramov, M. Petkovssek
{"title":"高斯帕的算法,精确的求和,以及离散的牛顿-莱布尼茨公式","authors":"S. Abramov, M. Petkovssek","doi":"10.1145/1073884.1073888","DOIUrl":null,"url":null,"abstract":"Sufficient conditions are given for validity of the discrete Newton-Leibniz formula when the indefinite sum is obtained either by Gosper's algorithm or by Accurate Summation algorithm. It is shown that sometimes a polynomial can be factored from the summand in such a way that the safe summation range is increased.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Gosper's algorithm, accurate summation, and the discrete Newton-Leibniz formula\",\"authors\":\"S. Abramov, M. Petkovssek\",\"doi\":\"10.1145/1073884.1073888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sufficient conditions are given for validity of the discrete Newton-Leibniz formula when the indefinite sum is obtained either by Gosper's algorithm or by Accurate Summation algorithm. It is shown that sometimes a polynomial can be factored from the summand in such a way that the safe summation range is increased.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

给出了离散牛顿-莱布尼茨公式在用高斯帕算法或精确求和算法求不定和时成立的充分条件。结果表明,有时可以用增大求和安全范围的方法从求和中分解出一个多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gosper's algorithm, accurate summation, and the discrete Newton-Leibniz formula
Sufficient conditions are given for validity of the discrete Newton-Leibniz formula when the indefinite sum is obtained either by Gosper's algorithm or by Accurate Summation algorithm. It is shown that sometimes a polynomial can be factored from the summand in such a way that the safe summation range is increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信