基于危险理论的微免疫优化算法求解概率约束优化

Zhuhong Zhang, Lun Li, Renchong Zhang
{"title":"基于危险理论的微免疫优化算法求解概率约束优化","authors":"Zhuhong Zhang, Lun Li, Renchong Zhang","doi":"10.1109/CIAPP.2017.8167189","DOIUrl":null,"url":null,"abstract":"This work investigates a micro immune optimization algorithm originated from the danger theory for single-objective probabilistic constrained optimization without any prior stochastic distribution information. In the whole process of population evolution, the current population is divided into species with different danger levels in terms of constraint dominance and danger radius update. Those species with low danger levels proliferate their clones and execute mutation with small variable mutation rates, whereas others directly participate in mutation with large mutation rates. Experimental results have validated that one such approach is a competitive and potential optimizer with structural simplicity and effective noise suppression.","PeriodicalId":187056,"journal":{"name":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Danger theory based micro immune optimization algorithm solving probabilistic constrained optimization\",\"authors\":\"Zhuhong Zhang, Lun Li, Renchong Zhang\",\"doi\":\"10.1109/CIAPP.2017.8167189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates a micro immune optimization algorithm originated from the danger theory for single-objective probabilistic constrained optimization without any prior stochastic distribution information. In the whole process of population evolution, the current population is divided into species with different danger levels in terms of constraint dominance and danger radius update. Those species with low danger levels proliferate their clones and execute mutation with small variable mutation rates, whereas others directly participate in mutation with large mutation rates. Experimental results have validated that one such approach is a competitive and potential optimizer with structural simplicity and effective noise suppression.\",\"PeriodicalId\":187056,\"journal\":{\"name\":\"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIAPP.2017.8167189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIAPP.2017.8167189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了一种基于危险理论的无先验随机分布单目标概率约束优化微免疫优化算法。在整个种群进化过程中,从约束优势度和危险半径更新的角度将当前种群划分为不同危险等级的物种。那些低危险水平的物种繁殖它们的克隆并以小的可变突变率进行突变,而其他物种直接参与突变率大的突变。实验结果表明,该方法具有结构简单、噪声抑制效果好等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Danger theory based micro immune optimization algorithm solving probabilistic constrained optimization
This work investigates a micro immune optimization algorithm originated from the danger theory for single-objective probabilistic constrained optimization without any prior stochastic distribution information. In the whole process of population evolution, the current population is divided into species with different danger levels in terms of constraint dominance and danger radius update. Those species with low danger levels proliferate their clones and execute mutation with small variable mutation rates, whereas others directly participate in mutation with large mutation rates. Experimental results have validated that one such approach is a competitive and potential optimizer with structural simplicity and effective noise suppression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信