Vandermonde矩阵分解的非单位双对角矩阵

R. Nair
{"title":"Vandermonde矩阵分解的非单位双对角矩阵","authors":"R. Nair","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.12.1","DOIUrl":null,"url":null,"abstract":"A non-unit bidiagonal matrix and its inverse with simple structures are introduced. These matrices can be constructed easily using the entries of a given non-zero vector without any computations among the entries. The matrix transforms the given vector to a column of the identity matrix. The given vector can be computed back without any round off error using the inverse matrix. Since a Vandermonde matrix can also be constructed using given n quantities, it is established in this paper that Vandermonde matrices can be factorized in a simple way by applying these bidiagonal matrices. Also it is demonstrated that factors of Vandermonde and inverse Vandermonde matrices can be conveniently presented using the matrices introduced here.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Unit Bidiagonal Matrices for Factorization of Vandermonde Matrices\",\"authors\":\"R. Nair\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.12.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-unit bidiagonal matrix and its inverse with simple structures are introduced. These matrices can be constructed easily using the entries of a given non-zero vector without any computations among the entries. The matrix transforms the given vector to a column of the identity matrix. The given vector can be computed back without any round off error using the inverse matrix. Since a Vandermonde matrix can also be constructed using given n quantities, it is established in this paper that Vandermonde matrices can be factorized in a simple way by applying these bidiagonal matrices. Also it is demonstrated that factors of Vandermonde and inverse Vandermonde matrices can be conveniently presented using the matrices introduced here.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.12.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.12.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一类结构简单的非单位双对角矩阵及其逆矩阵。这些矩阵可以很容易地使用给定的非零向量的元素来构造,而不需要在这些元素之间进行任何计算。矩阵将给定的向量变换成单位矩阵的一列。给定的向量可以用逆矩阵计算回来,没有任何舍入误差。由于Vandermonde矩阵也可以用给定的n个量来构造,因此本文证明了利用这些双对角矩阵可以简单地分解Vandermonde矩阵。还证明了Vandermonde矩阵的因子和逆Vandermonde矩阵的因子可以用这里介绍的矩阵方便地表示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Unit Bidiagonal Matrices for Factorization of Vandermonde Matrices
A non-unit bidiagonal matrix and its inverse with simple structures are introduced. These matrices can be constructed easily using the entries of a given non-zero vector without any computations among the entries. The matrix transforms the given vector to a column of the identity matrix. The given vector can be computed back without any round off error using the inverse matrix. Since a Vandermonde matrix can also be constructed using given n quantities, it is established in this paper that Vandermonde matrices can be factorized in a simple way by applying these bidiagonal matrices. Also it is demonstrated that factors of Vandermonde and inverse Vandermonde matrices can be conveniently presented using the matrices introduced here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信