基于信用的P2P社区的投资策略

M. Capotă, N. Andrade, J. Pouwelse, D. Epema
{"title":"基于信用的P2P社区的投资策略","authors":"M. Capotă, N. Andrade, J. Pouwelse, D. Epema","doi":"10.1109/PDP.2013.70","DOIUrl":null,"url":null,"abstract":"P2P communities that use credits to incentivize their members to contribute have emerged over the last few years. In particular, private BitTorrent communities keep track of the total upload and download of each member and impose a minimum threshold for their upload/download ratio, which is known as their sharing ratio. It has been shown that these private communities have significantly better download performance than public communities. However, this performance is based on oversupply, and it has also been shown that it is hard for users to maintain a good sharing ratio to avoid being expelled from the community. In this paper, we address this problem by introducing a speculative download mechanism to automatically manage user contribution in BitTorrent private communities. This mechanism, when integrated in a BitTorrent client, identifies the swarms that have the biggest upload potential, and automatically downloads and seeds them. In other words, it tries to invests the bandwidth of the user in a profitable way. In order to accurately asses the upload potential of swarms we analyze a private BitTorrent community and derive through multiple regression a predictor for the upload potential based on simple parameters accessible to each peer. The speculative download mechanism uses the predictor to build a cache of profitable swarms to which the peer can contribute. Our results show that 75 % of investment decisions result in an increase in upload bandwidth utilization, with a median 207 % return on investment.","PeriodicalId":202977,"journal":{"name":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Investment Strategies for Credit-Based P2P Communities\",\"authors\":\"M. Capotă, N. Andrade, J. Pouwelse, D. Epema\",\"doi\":\"10.1109/PDP.2013.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"P2P communities that use credits to incentivize their members to contribute have emerged over the last few years. In particular, private BitTorrent communities keep track of the total upload and download of each member and impose a minimum threshold for their upload/download ratio, which is known as their sharing ratio. It has been shown that these private communities have significantly better download performance than public communities. However, this performance is based on oversupply, and it has also been shown that it is hard for users to maintain a good sharing ratio to avoid being expelled from the community. In this paper, we address this problem by introducing a speculative download mechanism to automatically manage user contribution in BitTorrent private communities. This mechanism, when integrated in a BitTorrent client, identifies the swarms that have the biggest upload potential, and automatically downloads and seeds them. In other words, it tries to invests the bandwidth of the user in a profitable way. In order to accurately asses the upload potential of swarms we analyze a private BitTorrent community and derive through multiple regression a predictor for the upload potential based on simple parameters accessible to each peer. The speculative download mechanism uses the predictor to build a cache of profitable swarms to which the peer can contribute. Our results show that 75 % of investment decisions result in an increase in upload bandwidth utilization, with a median 207 % return on investment.\",\"PeriodicalId\":202977,\"journal\":{\"name\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2013.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2013.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去几年中,使用信用来激励其成员做出贡献的P2P社区已经出现。特别是,私有BitTorrent社区会跟踪每个成员的上传和下载总量,并为他们的上传/下载比率设定一个最低门槛,这就是他们的共享比率。研究表明,这些私人社区的下载性能明显优于公共社区。然而,这种表现是建立在供过于求的基础上的,也证明了用户很难保持良好的分享比例来避免被社区驱逐。在本文中,我们通过引入推测下载机制来自动管理BitTorrent私人社区中的用户贡献来解决这个问题。当集成在BitTorrent客户端中时,这种机制可以识别具有最大上传潜力的群,并自动下载和播种它们。换句话说,它试图以有利可图的方式投资用户的带宽。为了准确地评估群体的上传潜力,我们分析了一个私有的BitTorrent社区,并通过多元回归得出了一个基于每个对等体可访问的简单参数的上传潜力预测器。投机下载机制使用预测器来建立一个对等端可以贡献的有利可图的集群缓存。我们的结果表明,75%的投资决策导致上传带宽利用率的增加,投资回报率中位数为207%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investment Strategies for Credit-Based P2P Communities
P2P communities that use credits to incentivize their members to contribute have emerged over the last few years. In particular, private BitTorrent communities keep track of the total upload and download of each member and impose a minimum threshold for their upload/download ratio, which is known as their sharing ratio. It has been shown that these private communities have significantly better download performance than public communities. However, this performance is based on oversupply, and it has also been shown that it is hard for users to maintain a good sharing ratio to avoid being expelled from the community. In this paper, we address this problem by introducing a speculative download mechanism to automatically manage user contribution in BitTorrent private communities. This mechanism, when integrated in a BitTorrent client, identifies the swarms that have the biggest upload potential, and automatically downloads and seeds them. In other words, it tries to invests the bandwidth of the user in a profitable way. In order to accurately asses the upload potential of swarms we analyze a private BitTorrent community and derive through multiple regression a predictor for the upload potential based on simple parameters accessible to each peer. The speculative download mechanism uses the predictor to build a cache of profitable swarms to which the peer can contribute. Our results show that 75 % of investment decisions result in an increase in upload bandwidth utilization, with a median 207 % return on investment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信