{"title":"基于类的词义定义模型用于词义标注和消歧","authors":"Tracy Lin, Jason J. S. Chang","doi":"10.3115/1119250.1119252","DOIUrl":null,"url":null,"abstract":"We present an unsupervised learning strategy for word sense disambiguation (WSD) that exploits multiple linguistic resources including a parallel corpus, a bilingual machine readable dictionary, and a thesaurus. The approach is based on Class Based Sense Definition Model (CBSDM) that generates the glosses and translations for a class of word senses. The model can be applied to resolve sense ambiguity for words in a parallel corpus. That sense tagging procedure, in effect, produces a semantic bilingual concordance, which can be used to train WSD systems for the two languages involved. Experimental results show that CBSDM trained on Longman Dictionary of Contemporary English, English-Chinese Edition (LDOCE E-C) and Longman Lexicon of Contemporary English (LLOCE) is very effectively in turning a Chinese-English parallel corpus into sense tagged data for development of WSD systems.","PeriodicalId":403123,"journal":{"name":"Workshop on Chinese Language Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Class Based Sense Definition Model for Word Sense Tagging and Disambiguation\",\"authors\":\"Tracy Lin, Jason J. S. Chang\",\"doi\":\"10.3115/1119250.1119252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an unsupervised learning strategy for word sense disambiguation (WSD) that exploits multiple linguistic resources including a parallel corpus, a bilingual machine readable dictionary, and a thesaurus. The approach is based on Class Based Sense Definition Model (CBSDM) that generates the glosses and translations for a class of word senses. The model can be applied to resolve sense ambiguity for words in a parallel corpus. That sense tagging procedure, in effect, produces a semantic bilingual concordance, which can be used to train WSD systems for the two languages involved. Experimental results show that CBSDM trained on Longman Dictionary of Contemporary English, English-Chinese Edition (LDOCE E-C) and Longman Lexicon of Contemporary English (LLOCE) is very effectively in turning a Chinese-English parallel corpus into sense tagged data for development of WSD systems.\",\"PeriodicalId\":403123,\"journal\":{\"name\":\"Workshop on Chinese Language Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Chinese Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1119250.1119252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Chinese Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119250.1119252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Class Based Sense Definition Model for Word Sense Tagging and Disambiguation
We present an unsupervised learning strategy for word sense disambiguation (WSD) that exploits multiple linguistic resources including a parallel corpus, a bilingual machine readable dictionary, and a thesaurus. The approach is based on Class Based Sense Definition Model (CBSDM) that generates the glosses and translations for a class of word senses. The model can be applied to resolve sense ambiguity for words in a parallel corpus. That sense tagging procedure, in effect, produces a semantic bilingual concordance, which can be used to train WSD systems for the two languages involved. Experimental results show that CBSDM trained on Longman Dictionary of Contemporary English, English-Chinese Edition (LDOCE E-C) and Longman Lexicon of Contemporary English (LLOCE) is very effectively in turning a Chinese-English parallel corpus into sense tagged data for development of WSD systems.