基于模拟RRAM器件固有随机噪声的生成对抗网络论证

Yudeng Lin, Huaqiang Wu, B. Gao, Peng Yao, Wei Wu, Qingtian Zhang, Xiaodong Zhang, Xinyi Li, Fuhai Li, Jiwu Lu, Gezi Li, Shimeng Yu, H. Qian
{"title":"基于模拟RRAM器件固有随机噪声的生成对抗网络论证","authors":"Yudeng Lin, Huaqiang Wu, B. Gao, Peng Yao, Wei Wu, Qingtian Zhang, Xiaodong Zhang, Xinyi Li, Fuhai Li, Jiwu Lu, Gezi Li, Shimeng Yu, H. Qian","doi":"10.1109/IEDM.2018.8614483","DOIUrl":null,"url":null,"abstract":"For the first time, Generative Adversarial Network (GAN) is experimentally demonstrated on 1kb analog RRAM array. After online training, the network can generate different patterns of digital numbers. The intrinsic random noises of analog RRAM device are utilized as the input of the neural network to improve the diversity of the generated numbers. The impacts of read and write noises on the performance of GAN are analyzed. Optimized methodology is developed to mitigate the excessive noise effect on RRAM based GAN. This work proves that RRAM is suitable for the application of GAN. It also paves a new way to take advantage of the non-ideal effects of RRAM devices.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"11 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Demonstration of Generative Adversarial Network by Intrinsic Random Noises of Analog RRAM Devices\",\"authors\":\"Yudeng Lin, Huaqiang Wu, B. Gao, Peng Yao, Wei Wu, Qingtian Zhang, Xiaodong Zhang, Xinyi Li, Fuhai Li, Jiwu Lu, Gezi Li, Shimeng Yu, H. Qian\",\"doi\":\"10.1109/IEDM.2018.8614483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, Generative Adversarial Network (GAN) is experimentally demonstrated on 1kb analog RRAM array. After online training, the network can generate different patterns of digital numbers. The intrinsic random noises of analog RRAM device are utilized as the input of the neural network to improve the diversity of the generated numbers. The impacts of read and write noises on the performance of GAN are analyzed. Optimized methodology is developed to mitigate the excessive noise effect on RRAM based GAN. This work proves that RRAM is suitable for the application of GAN. It also paves a new way to take advantage of the non-ideal effects of RRAM devices.\",\"PeriodicalId\":152963,\"journal\":{\"name\":\"2018 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"11 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2018.8614483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2018.8614483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

首次在1kb模拟随机存储器阵列上对生成对抗网络(GAN)进行了实验验证。经过在线训练,网络可以生成不同模式的数字数字。利用模拟随机存储器器件的固有随机噪声作为神经网络的输入,提高了所生成数字的多样性。分析了读写噪声对GAN性能的影响。提出了一种优化方法,以减轻基于RRAM的GAN的过度噪声影响。这一工作证明了RRAM适合GAN的应用。这也为利用RRAM器件的非理想效应开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstration of Generative Adversarial Network by Intrinsic Random Noises of Analog RRAM Devices
For the first time, Generative Adversarial Network (GAN) is experimentally demonstrated on 1kb analog RRAM array. After online training, the network can generate different patterns of digital numbers. The intrinsic random noises of analog RRAM device are utilized as the input of the neural network to improve the diversity of the generated numbers. The impacts of read and write noises on the performance of GAN are analyzed. Optimized methodology is developed to mitigate the excessive noise effect on RRAM based GAN. This work proves that RRAM is suitable for the application of GAN. It also paves a new way to take advantage of the non-ideal effects of RRAM devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信