M. Yahia, Tarig Ali, M. Mortula, R. Abdelfattah, S. Elmahdy
{"title":"基于线性回归的极sar滤波的无限数look预测","authors":"M. Yahia, Tarig Ali, M. Mortula, R. Abdelfattah, S. Elmahdy","doi":"10.1109/IGARSS39084.2020.9323632","DOIUrl":null,"url":null,"abstract":"In this paper, the application of the synthetic aperture radar (SAR) infinite number of looks prediction (INLP) filter is extended to polarimetric SAR (PoISAR) speckle filtering. The scalar linear regression rule has been adapted to PolSAR context in order to preserve the polarimetric information. Experimental results using simulated and airborne PolSAR data show that the proposed approach improved the polarimetric filtering criteria.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Infinite Number of Looks Prediction in Polsar Filtering by Linear Regression\",\"authors\":\"M. Yahia, Tarig Ali, M. Mortula, R. Abdelfattah, S. Elmahdy\",\"doi\":\"10.1109/IGARSS39084.2020.9323632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the application of the synthetic aperture radar (SAR) infinite number of looks prediction (INLP) filter is extended to polarimetric SAR (PoISAR) speckle filtering. The scalar linear regression rule has been adapted to PolSAR context in order to preserve the polarimetric information. Experimental results using simulated and airborne PolSAR data show that the proposed approach improved the polarimetric filtering criteria.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Infinite Number of Looks Prediction in Polsar Filtering by Linear Regression
In this paper, the application of the synthetic aperture radar (SAR) infinite number of looks prediction (INLP) filter is extended to polarimetric SAR (PoISAR) speckle filtering. The scalar linear regression rule has been adapted to PolSAR context in order to preserve the polarimetric information. Experimental results using simulated and airborne PolSAR data show that the proposed approach improved the polarimetric filtering criteria.