基于线性回归的极sar滤波的无限数look预测

M. Yahia, Tarig Ali, M. Mortula, R. Abdelfattah, S. Elmahdy
{"title":"基于线性回归的极sar滤波的无限数look预测","authors":"M. Yahia, Tarig Ali, M. Mortula, R. Abdelfattah, S. Elmahdy","doi":"10.1109/IGARSS39084.2020.9323632","DOIUrl":null,"url":null,"abstract":"In this paper, the application of the synthetic aperture radar (SAR) infinite number of looks prediction (INLP) filter is extended to polarimetric SAR (PoISAR) speckle filtering. The scalar linear regression rule has been adapted to PolSAR context in order to preserve the polarimetric information. Experimental results using simulated and airborne PolSAR data show that the proposed approach improved the polarimetric filtering criteria.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Infinite Number of Looks Prediction in Polsar Filtering by Linear Regression\",\"authors\":\"M. Yahia, Tarig Ali, M. Mortula, R. Abdelfattah, S. Elmahdy\",\"doi\":\"10.1109/IGARSS39084.2020.9323632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the application of the synthetic aperture radar (SAR) infinite number of looks prediction (INLP) filter is extended to polarimetric SAR (PoISAR) speckle filtering. The scalar linear regression rule has been adapted to PolSAR context in order to preserve the polarimetric information. Experimental results using simulated and airborne PolSAR data show that the proposed approach improved the polarimetric filtering criteria.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将合成孔径雷达(SAR)无限数量级预测(INLP)滤波器的应用扩展到极化SAR (PoISAR)散斑滤波。为了保留极化信息,将标量线性回归规则适应于PolSAR环境。仿真和机载PolSAR数据的实验结果表明,该方法改进了极化滤波准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite Number of Looks Prediction in Polsar Filtering by Linear Regression
In this paper, the application of the synthetic aperture radar (SAR) infinite number of looks prediction (INLP) filter is extended to polarimetric SAR (PoISAR) speckle filtering. The scalar linear regression rule has been adapted to PolSAR context in order to preserve the polarimetric information. Experimental results using simulated and airborne PolSAR data show that the proposed approach improved the polarimetric filtering criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信