空气小提琴:一种手指手势识别的机器学习方法

D. Dalmazzo, R. Ramírez
{"title":"空气小提琴:一种手指手势识别的机器学习方法","authors":"D. Dalmazzo, R. Ramírez","doi":"10.1145/3139513.3139526","DOIUrl":null,"url":null,"abstract":"We train and evaluate two machine learning models for predicting fingering in violin performances using motion and EMG sensors integrated in the Myo device. Our aim is twofold: first, provide a fingering recognition model in the context of a gamification virtual violin application where we measure both right hand (i.e. bow) and left hand (i.e. fingering) gestures, and second, implement a tracking system for a computer assisted pedagogical tool for self-regulated learners in high-level music education. Our approach is based on the principle of mapping-by-demonstration in which the model is trained by the performer. We evaluated a model based on Decision Trees and compared it with a Hidden Markovian Model.","PeriodicalId":441030,"journal":{"name":"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Air violin: a machine learning approach to fingering gesture recognition\",\"authors\":\"D. Dalmazzo, R. Ramírez\",\"doi\":\"10.1145/3139513.3139526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We train and evaluate two machine learning models for predicting fingering in violin performances using motion and EMG sensors integrated in the Myo device. Our aim is twofold: first, provide a fingering recognition model in the context of a gamification virtual violin application where we measure both right hand (i.e. bow) and left hand (i.e. fingering) gestures, and second, implement a tracking system for a computer assisted pedagogical tool for self-regulated learners in high-level music education. Our approach is based on the principle of mapping-by-demonstration in which the model is trained by the performer. We evaluated a model based on Decision Trees and compared it with a Hidden Markovian Model.\",\"PeriodicalId\":441030,\"journal\":{\"name\":\"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139513.3139526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139513.3139526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们训练和评估了两种机器学习模型,使用Myo设备中集成的运动和肌电传感器来预测小提琴演奏中的指法。我们的目标是双重的:首先,在游戏化虚拟小提琴应用的背景下提供指法识别模型,我们测量右手(即弓)和左手(即指法)手势,其次,为高级音乐教育中自我调节的学习者实现计算机辅助教学工具的跟踪系统。我们的方法基于由演示映射的原则,其中模型由执行者训练。我们评估了一个基于决策树的模型,并将其与隐马尔可夫模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air violin: a machine learning approach to fingering gesture recognition
We train and evaluate two machine learning models for predicting fingering in violin performances using motion and EMG sensors integrated in the Myo device. Our aim is twofold: first, provide a fingering recognition model in the context of a gamification virtual violin application where we measure both right hand (i.e. bow) and left hand (i.e. fingering) gestures, and second, implement a tracking system for a computer assisted pedagogical tool for self-regulated learners in high-level music education. Our approach is based on the principle of mapping-by-demonstration in which the model is trained by the performer. We evaluated a model based on Decision Trees and compared it with a Hidden Markovian Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信