人体活动识别的可靠性评估

Alberto Fornaser, M. Cecco, Teruhiro Mizumoto, K. Yasumoto
{"title":"人体活动识别的可靠性评估","authors":"Alberto Fornaser, M. Cecco, Teruhiro Mizumoto, K. Yasumoto","doi":"10.1109/ICAIIC.2019.8668976","DOIUrl":null,"url":null,"abstract":"Recognition of activity of daily living (ADL) with ubiquitous sensors has been studied so far, aiming to provide services like automatic life logging, elderly monitoring and energy saving in domestic environments. Although existing studies achieve good accuracy of ADL recognition on average, mis-classification of some activities often occur. In this paper, we try to minimize mis-classification in ADL recognition through reliability assessment of the recognition results obtained by machine learning. Specifically, we propose a novel ADL recognition model which extends the random forest classifier trained by ADL data-set by adding the real time uncertainty propagation of the measured variables to each decision tree providing thus the confidence probability of each output class. This adds to the classifier output a confidence value that holds an important role for many purposes such as decision making, features design to improve the classification rate for some classes, etc. The proposed model classifies the input data samples into activity classes with high confidence probability (e.g., more than 50% confidence) and an unclassifiable class, where higher confidence probability leads to the higher recognition accuracy but higher ratio of unclassifiable samples. Through experiments, we confirmed that the proposed model achieve 75% accuracy with less than 30% unclassifiable samples and 95% accuracy with 50% unclassifiable samples.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability assessment on human activity recognition\",\"authors\":\"Alberto Fornaser, M. Cecco, Teruhiro Mizumoto, K. Yasumoto\",\"doi\":\"10.1109/ICAIIC.2019.8668976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of activity of daily living (ADL) with ubiquitous sensors has been studied so far, aiming to provide services like automatic life logging, elderly monitoring and energy saving in domestic environments. Although existing studies achieve good accuracy of ADL recognition on average, mis-classification of some activities often occur. In this paper, we try to minimize mis-classification in ADL recognition through reliability assessment of the recognition results obtained by machine learning. Specifically, we propose a novel ADL recognition model which extends the random forest classifier trained by ADL data-set by adding the real time uncertainty propagation of the measured variables to each decision tree providing thus the confidence probability of each output class. This adds to the classifier output a confidence value that holds an important role for many purposes such as decision making, features design to improve the classification rate for some classes, etc. The proposed model classifies the input data samples into activity classes with high confidence probability (e.g., more than 50% confidence) and an unclassifiable class, where higher confidence probability leads to the higher recognition accuracy but higher ratio of unclassifiable samples. Through experiments, we confirmed that the proposed model achieve 75% accuracy with less than 30% unclassifiable samples and 95% accuracy with 50% unclassifiable samples.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8668976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8668976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用无处不在的传感器识别日常生活活动(ADL)是目前研究的方向,旨在为家庭环境提供自动生活记录、老年人监控和节能等服务。虽然现有的研究平均达到了较好的ADL识别准确率,但也经常出现对某些活动的误分类。在本文中,我们试图通过对机器学习获得的识别结果的可靠性评估来减少ADL识别中的误分类。具体而言,我们提出了一种新的ADL识别模型,该模型扩展了由ADL数据集训练的随机森林分类器,通过将测量变量的实时不确定性传播添加到每个决策树中,从而提供每个输出类的置信概率。这为分类器输出增加了一个置信度值,该置信度值在许多方面都发挥着重要作用,例如决策制定、特征设计以提高某些类的分类率等。该模型将输入的数据样本分为高置信度概率(如置信度大于50%)的活动类和不可分类类,其中置信度越高,识别精度越高,但不可分类样本的比例越高。通过实验,我们证实了该模型在30%以下的不可分类样本下达到75%的准确率,在50%的不可分类样本下达到95%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability assessment on human activity recognition
Recognition of activity of daily living (ADL) with ubiquitous sensors has been studied so far, aiming to provide services like automatic life logging, elderly monitoring and energy saving in domestic environments. Although existing studies achieve good accuracy of ADL recognition on average, mis-classification of some activities often occur. In this paper, we try to minimize mis-classification in ADL recognition through reliability assessment of the recognition results obtained by machine learning. Specifically, we propose a novel ADL recognition model which extends the random forest classifier trained by ADL data-set by adding the real time uncertainty propagation of the measured variables to each decision tree providing thus the confidence probability of each output class. This adds to the classifier output a confidence value that holds an important role for many purposes such as decision making, features design to improve the classification rate for some classes, etc. The proposed model classifies the input data samples into activity classes with high confidence probability (e.g., more than 50% confidence) and an unclassifiable class, where higher confidence probability leads to the higher recognition accuracy but higher ratio of unclassifiable samples. Through experiments, we confirmed that the proposed model achieve 75% accuracy with less than 30% unclassifiable samples and 95% accuracy with 50% unclassifiable samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信