在零偏置和可见光至近红外波段下,石墨烯和硅之间的界面具有高光学转换能力

Chin-Chiang Hsiao, M. Wei, Ting-Ting Ren, Bo-Yi Chen, Mei-Yi Li, Jui-Min Liou, F. Ko, Y. Lai
{"title":"在零偏置和可见光至近红外波段下,石墨烯和硅之间的界面具有高光学转换能力","authors":"Chin-Chiang Hsiao, M. Wei, Ting-Ting Ren, Bo-Yi Chen, Mei-Yi Li, Jui-Min Liou, F. Ko, Y. Lai","doi":"10.1109/AM-FPD.2016.7543663","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrate the high performance few-layer graphene-Si sensor with high photoresponsivity of 95 mA/W, operation behaviors with external bias as low as 0 V, and broadband operating light wavelength from 400 nm to 1000 nm by combining high transparency of few-layer graphene and n-type silicon. Although external bias benefits the photoresponsivity, the larger dark current is the price to pay. Under zero bias, the different Si substrate, n-type or p-type, provides variant Schottky barrier height guiding different photoelectrical behavior also be investigated in this work. According to the experimental results, few-layer graphene over p-type silicon (FLG p-Si) has one order higher the dark current of the few-layer graphene over n-type silicon (FLG n-Si) to ensure that the detection region between few-layer graphene and n-type silicon profits high optical-to-electrical conversion. Further, the capability of photocurrent-to-photovoltage conversion directly in one device is also provided and verified to profit the integration proposed device with periphery circuit easily.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High optical conversion capability within the interface between graphene and Si under zero bias and visible to near infrared regime\",\"authors\":\"Chin-Chiang Hsiao, M. Wei, Ting-Ting Ren, Bo-Yi Chen, Mei-Yi Li, Jui-Min Liou, F. Ko, Y. Lai\",\"doi\":\"10.1109/AM-FPD.2016.7543663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we demonstrate the high performance few-layer graphene-Si sensor with high photoresponsivity of 95 mA/W, operation behaviors with external bias as low as 0 V, and broadband operating light wavelength from 400 nm to 1000 nm by combining high transparency of few-layer graphene and n-type silicon. Although external bias benefits the photoresponsivity, the larger dark current is the price to pay. Under zero bias, the different Si substrate, n-type or p-type, provides variant Schottky barrier height guiding different photoelectrical behavior also be investigated in this work. According to the experimental results, few-layer graphene over p-type silicon (FLG p-Si) has one order higher the dark current of the few-layer graphene over n-type silicon (FLG n-Si) to ensure that the detection region between few-layer graphene and n-type silicon profits high optical-to-electrical conversion. Further, the capability of photocurrent-to-photovoltage conversion directly in one device is also provided and verified to profit the integration proposed device with periphery circuit easily.\",\"PeriodicalId\":422453,\"journal\":{\"name\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AM-FPD.2016.7543663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们通过结合少层石墨烯和n型硅的高透明度,展示了高性能的少层石墨烯-硅传感器,具有95 mA/W的高光响应性,低至0 V的外偏置工作行为,以及400 nm至1000 nm的宽带工作波长。虽然外部偏置有利于光响应性,但更大的暗电流是要付出的代价。在零偏压下,不同的Si衬底(n型或p型)提供不同的肖特基势垒高度,指导不同的光电行为也在本工作中进行了研究。实验结果表明,p型硅(FLG p-Si)上的少层石墨烯比n型硅(FLG n-Si)上的少层石墨烯具有高一个数量级的暗电流,从而保证了少层石墨烯与n型硅之间的检测区域获得较高的光电转换。此外,还提供并验证了在一个器件内直接进行光电流到光电压转换的能力,从而使所提出的器件易于与外围电路集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High optical conversion capability within the interface between graphene and Si under zero bias and visible to near infrared regime
In this study, we demonstrate the high performance few-layer graphene-Si sensor with high photoresponsivity of 95 mA/W, operation behaviors with external bias as low as 0 V, and broadband operating light wavelength from 400 nm to 1000 nm by combining high transparency of few-layer graphene and n-type silicon. Although external bias benefits the photoresponsivity, the larger dark current is the price to pay. Under zero bias, the different Si substrate, n-type or p-type, provides variant Schottky barrier height guiding different photoelectrical behavior also be investigated in this work. According to the experimental results, few-layer graphene over p-type silicon (FLG p-Si) has one order higher the dark current of the few-layer graphene over n-type silicon (FLG n-Si) to ensure that the detection region between few-layer graphene and n-type silicon profits high optical-to-electrical conversion. Further, the capability of photocurrent-to-photovoltage conversion directly in one device is also provided and verified to profit the integration proposed device with periphery circuit easily.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信