基于webscope S5数据集的在线异常检测:比较研究

Markus Thill, W. Konen, Thomas Bäck
{"title":"基于webscope S5数据集的在线异常检测:比较研究","authors":"Markus Thill, W. Konen, Thomas Bäck","doi":"10.1109/EAIS.2017.7954844","DOIUrl":null,"url":null,"abstract":"An unresolved challenge for all kind of temporal data is the reliable anomaly detection, especially when adaptability is required in the case of non-stationary time series or when the nature of future anomalies is unknown or only vaguely defined. Most of the current anomaly detection algorithms follow the general idea to classify an anomaly as a significant deviation from the prediction. In this paper we present a comparative study where several online anomaly detection algorithms are compared on the large Yahoo Webscope S5 anomaly benchmark. We show that a relatively Simple Online Regression Anomaly Detector (SORAD) is quite successful compared to other anomaly detectors. We discuss the importance of several adaptive and online elements of the algorithm and their influence on the overall anomaly detection accuracy.","PeriodicalId":286312,"journal":{"name":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Online anomaly detection on the webscope S5 dataset: A comparative study\",\"authors\":\"Markus Thill, W. Konen, Thomas Bäck\",\"doi\":\"10.1109/EAIS.2017.7954844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An unresolved challenge for all kind of temporal data is the reliable anomaly detection, especially when adaptability is required in the case of non-stationary time series or when the nature of future anomalies is unknown or only vaguely defined. Most of the current anomaly detection algorithms follow the general idea to classify an anomaly as a significant deviation from the prediction. In this paper we present a comparative study where several online anomaly detection algorithms are compared on the large Yahoo Webscope S5 anomaly benchmark. We show that a relatively Simple Online Regression Anomaly Detector (SORAD) is quite successful compared to other anomaly detectors. We discuss the importance of several adaptive and online elements of the algorithm and their influence on the overall anomaly detection accuracy.\",\"PeriodicalId\":286312,\"journal\":{\"name\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2017.7954844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2017.7954844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

对于所有类型的时间数据来说,一个尚未解决的挑战是可靠的异常检测,特别是当需要在非平稳时间序列的情况下进行适应性检测,或者当未来异常的性质未知或仅模糊定义时。目前大多数异常检测算法都遵循将异常分类为与预测的显著偏差的一般思路。在本文中,我们提出了一项比较研究,其中几种在线异常检测算法在大型Yahoo Webscope S5异常基准上进行了比较。我们证明了相对简单的在线回归异常检测器(SORAD)与其他异常检测器相比是相当成功的。我们讨论了算法中几个自适应和在线元素的重要性,以及它们对整体异常检测精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online anomaly detection on the webscope S5 dataset: A comparative study
An unresolved challenge for all kind of temporal data is the reliable anomaly detection, especially when adaptability is required in the case of non-stationary time series or when the nature of future anomalies is unknown or only vaguely defined. Most of the current anomaly detection algorithms follow the general idea to classify an anomaly as a significant deviation from the prediction. In this paper we present a comparative study where several online anomaly detection algorithms are compared on the large Yahoo Webscope S5 anomaly benchmark. We show that a relatively Simple Online Regression Anomaly Detector (SORAD) is quite successful compared to other anomaly detectors. We discuss the importance of several adaptive and online elements of the algorithm and their influence on the overall anomaly detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信