在Muhammadiyah Maluku大学的信息技术实验室中建立了一个使用基因算法的调度信息系统

Agil Assagaf, Adelina Ibrahim, Catur Suranto
{"title":"在Muhammadiyah Maluku大学的信息技术实验室中建立了一个使用基因算法的调度信息系统","authors":"Agil Assagaf, Adelina Ibrahim, Catur Suranto","doi":"10.47324/ilkominfo.v1i2.13","DOIUrl":null,"url":null,"abstract":"Abstrak : Penjadwalan praktikum merupakan proses penyusunan jadwal pelaksanaan yang menginformasikan sejumlah mata kuliah, dosen yang mengajar, ruang, serta waktu kegiatan perkuliahan di laboratorium. Perlu diperhatikan beberapa aspek untuk menyusun jadwal perkuliahan yang sesuai dengan kebutuhan. Aspek yang perlu diperhatikan antara lain adalah aspek dari dosen yang mengajar, mata kuliah yang diajar. Penyusunan jadwal secara manual cenderung membutuhkan waktu yang lebih lama dan ketelitian yang cukup bagi pembuat jadwal. Untuk dapat membuat jadwal yang optional, dibutuhkan metode optimasi. Pada penelitian ini, akan diuji coba metode optimasi dalam pembuatan jadwal praktikum yaitu Algoritma Genetika. Algoritma genetika merupakan pendekatan komputasional untuk menyelesaikan masalah yang dimodelkan dengan proses biologi dari evolusi. Parameter-parameter Algoritma Genetika yang mempengaruhi jadwal perkuliahan yang dihasilkan adalah jumlah individu, probabilitas crossover, probabilitas mutasi serta metode seleksi, crossover yang digunakan. Pengujian dilakukan dengan cara mencari nilai parameter-parameter algoritma genetika yang paling optimal dalam jadwal perkuliahan. Hasil penelitian menunjukkan bahwa dengan jumlah generasi, jumlah individu, probabilitas crossover dan probabilitas mutasi dapat menghasilkan jadwal yang paling optimal.Kata kunci: Optimasi, Penjadwalan, Seleksi, Crossover, Mutasi, Algoritma GenetikaAbstract : Practical scheduling is the process of preparation of an implementation schedule that informs a number of courses, lecturers who teach, space, and time of lecture activities in the laboratory. It should be noted several aspects to arrange lecture schedule in accordance with the needs. Aspects that need to be considered include aspects of lecturers who teach, courses taught. Manual scheduling tends to take longer and enough accuracy for the schedule maker. To be able to create an optional schedule, an optimization method is required. In this research, will be tested the optimization method in the preparation of the practice schedule that is Genetic Algorithm. Genetic algorithms are a computational approach to solving problems modeled by biological processes of evolution. The parameters of the Genetic Algorithm affecting the course schedule are the number of individuals, the probability of crossover, the probability of mutation and the method of selection, the crossover used. Testing is done by finding the most optimal parameter values of genetic algorithm in lecture schedule. The results show that with the number of generations, the number of individuals, the probability of crossover and the probability of mutation can produce the most optimal schedule.  Keywords: Optimization, Scheduling, Selection, Crossover, Mutation, Genetic Algorithm","PeriodicalId":376223,"journal":{"name":"Jurnal Ilmiah ILKOMINFO - Ilmu Komputer & Informatika","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Membangun Sistem Informasi Penjadwalan Dengan Metode Algoritma Genetika Pada Laboratorium Teknik Informatika Universitas Muhammadiyah Maluku Utara\",\"authors\":\"Agil Assagaf, Adelina Ibrahim, Catur Suranto\",\"doi\":\"10.47324/ilkominfo.v1i2.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstrak : Penjadwalan praktikum merupakan proses penyusunan jadwal pelaksanaan yang menginformasikan sejumlah mata kuliah, dosen yang mengajar, ruang, serta waktu kegiatan perkuliahan di laboratorium. Perlu diperhatikan beberapa aspek untuk menyusun jadwal perkuliahan yang sesuai dengan kebutuhan. Aspek yang perlu diperhatikan antara lain adalah aspek dari dosen yang mengajar, mata kuliah yang diajar. Penyusunan jadwal secara manual cenderung membutuhkan waktu yang lebih lama dan ketelitian yang cukup bagi pembuat jadwal. Untuk dapat membuat jadwal yang optional, dibutuhkan metode optimasi. Pada penelitian ini, akan diuji coba metode optimasi dalam pembuatan jadwal praktikum yaitu Algoritma Genetika. Algoritma genetika merupakan pendekatan komputasional untuk menyelesaikan masalah yang dimodelkan dengan proses biologi dari evolusi. Parameter-parameter Algoritma Genetika yang mempengaruhi jadwal perkuliahan yang dihasilkan adalah jumlah individu, probabilitas crossover, probabilitas mutasi serta metode seleksi, crossover yang digunakan. Pengujian dilakukan dengan cara mencari nilai parameter-parameter algoritma genetika yang paling optimal dalam jadwal perkuliahan. Hasil penelitian menunjukkan bahwa dengan jumlah generasi, jumlah individu, probabilitas crossover dan probabilitas mutasi dapat menghasilkan jadwal yang paling optimal.Kata kunci: Optimasi, Penjadwalan, Seleksi, Crossover, Mutasi, Algoritma GenetikaAbstract : Practical scheduling is the process of preparation of an implementation schedule that informs a number of courses, lecturers who teach, space, and time of lecture activities in the laboratory. It should be noted several aspects to arrange lecture schedule in accordance with the needs. Aspects that need to be considered include aspects of lecturers who teach, courses taught. Manual scheduling tends to take longer and enough accuracy for the schedule maker. To be able to create an optional schedule, an optimization method is required. In this research, will be tested the optimization method in the preparation of the practice schedule that is Genetic Algorithm. Genetic algorithms are a computational approach to solving problems modeled by biological processes of evolution. The parameters of the Genetic Algorithm affecting the course schedule are the number of individuals, the probability of crossover, the probability of mutation and the method of selection, the crossover used. Testing is done by finding the most optimal parameter values of genetic algorithm in lecture schedule. The results show that with the number of generations, the number of individuals, the probability of crossover and the probability of mutation can produce the most optimal schedule.  Keywords: Optimization, Scheduling, Selection, Crossover, Mutation, Genetic Algorithm\",\"PeriodicalId\":376223,\"journal\":{\"name\":\"Jurnal Ilmiah ILKOMINFO - Ilmu Komputer & Informatika\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah ILKOMINFO - Ilmu Komputer & Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47324/ilkominfo.v1i2.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah ILKOMINFO - Ilmu Komputer & Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47324/ilkominfo.v1i2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要:练习时间是一种执行计划过程,它能告诉实验室里的一些课程、教授、空间和时间。安排一个适合需要的讲座需要考虑几个方面。需要考虑的方面包括教授的方面,教授的学科。手工制定时间表往往需要更长的时间和足够的精确度来制定计划。为了创建一个可选的时间表,需要优化的方法。在这项研究中,它将在基因算法的实际工作时间中测试优化方法。基因算法是一种用进化过程的生物过程来模拟模拟问题的计算方法。影响结果的基因算法参数是个体的数量,交叉概率,突变和选择方法的概率,使用交叉数。测试是通过确定大学日程中最优的基因参数参数值来进行的。研究表明,通过生成、个体的数量,交叉概率和突变概率可以产生最优的时间表。关键词:优化、调度、选择、交叉、突变、基因运算算法:实际调度程序是在实验室中提供信息、演讲、空间和时间限制的过程。它应该是分开的,分配分配与需要。那些需要被认为是教师、教师、教师所引导的轻率行为的人。手工计时时间长到足够准确。能够创建一个可选的期限,一种优化的方法是可接受的。在这项研究中,将测试实践中设定的优化方法,这是一种基因算法。基因算法是一种计算方法,可以用生物进化过程来解决问题。基因算法影响的参数参数的设定是个人的数量、交叉的可能性、变异的可能性和吸引力的方法,交叉引用被使用。测试是通过在lecture schedule中找到最优的遗传价值参数来完成的。结果显示,有了一代人的数字、个人的数字、交叉的可能性和变异的可能性,就能做出最理想的安排。优化,调度,选择,交叉,变异,基因算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Membangun Sistem Informasi Penjadwalan Dengan Metode Algoritma Genetika Pada Laboratorium Teknik Informatika Universitas Muhammadiyah Maluku Utara
Abstrak : Penjadwalan praktikum merupakan proses penyusunan jadwal pelaksanaan yang menginformasikan sejumlah mata kuliah, dosen yang mengajar, ruang, serta waktu kegiatan perkuliahan di laboratorium. Perlu diperhatikan beberapa aspek untuk menyusun jadwal perkuliahan yang sesuai dengan kebutuhan. Aspek yang perlu diperhatikan antara lain adalah aspek dari dosen yang mengajar, mata kuliah yang diajar. Penyusunan jadwal secara manual cenderung membutuhkan waktu yang lebih lama dan ketelitian yang cukup bagi pembuat jadwal. Untuk dapat membuat jadwal yang optional, dibutuhkan metode optimasi. Pada penelitian ini, akan diuji coba metode optimasi dalam pembuatan jadwal praktikum yaitu Algoritma Genetika. Algoritma genetika merupakan pendekatan komputasional untuk menyelesaikan masalah yang dimodelkan dengan proses biologi dari evolusi. Parameter-parameter Algoritma Genetika yang mempengaruhi jadwal perkuliahan yang dihasilkan adalah jumlah individu, probabilitas crossover, probabilitas mutasi serta metode seleksi, crossover yang digunakan. Pengujian dilakukan dengan cara mencari nilai parameter-parameter algoritma genetika yang paling optimal dalam jadwal perkuliahan. Hasil penelitian menunjukkan bahwa dengan jumlah generasi, jumlah individu, probabilitas crossover dan probabilitas mutasi dapat menghasilkan jadwal yang paling optimal.Kata kunci: Optimasi, Penjadwalan, Seleksi, Crossover, Mutasi, Algoritma GenetikaAbstract : Practical scheduling is the process of preparation of an implementation schedule that informs a number of courses, lecturers who teach, space, and time of lecture activities in the laboratory. It should be noted several aspects to arrange lecture schedule in accordance with the needs. Aspects that need to be considered include aspects of lecturers who teach, courses taught. Manual scheduling tends to take longer and enough accuracy for the schedule maker. To be able to create an optional schedule, an optimization method is required. In this research, will be tested the optimization method in the preparation of the practice schedule that is Genetic Algorithm. Genetic algorithms are a computational approach to solving problems modeled by biological processes of evolution. The parameters of the Genetic Algorithm affecting the course schedule are the number of individuals, the probability of crossover, the probability of mutation and the method of selection, the crossover used. Testing is done by finding the most optimal parameter values of genetic algorithm in lecture schedule. The results show that with the number of generations, the number of individuals, the probability of crossover and the probability of mutation can produce the most optimal schedule.  Keywords: Optimization, Scheduling, Selection, Crossover, Mutation, Genetic Algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信