基于全局和局部信息的线性判别分析在SAR影像时序植被分类中的应用

U. Sakarya, C. Demirpolat
{"title":"基于全局和局部信息的线性判别分析在SAR影像时序植被分类中的应用","authors":"U. Sakarya, C. Demirpolat","doi":"10.1109/SIU.2017.7960204","DOIUrl":null,"url":null,"abstract":"Vegetation classification using SAR images is one of the research topics in remote sensing. In this paper, SAR image time series analysis in vegetation classification using global and local information based linear discriminant analysis is presented. It is experimentally demonstrated that the use of local pattern information in addition to global pattern information has increased both accuracy and time performance in vegetation classification using time-series TerraSAR-X images.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SAR image time series analysis in vegetation classification using global and local information based linear discriminant analysis\",\"authors\":\"U. Sakarya, C. Demirpolat\",\"doi\":\"10.1109/SIU.2017.7960204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vegetation classification using SAR images is one of the research topics in remote sensing. In this paper, SAR image time series analysis in vegetation classification using global and local information based linear discriminant analysis is presented. It is experimentally demonstrated that the use of local pattern information in addition to global pattern information has increased both accuracy and time performance in vegetation classification using time-series TerraSAR-X images.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用SAR影像进行植被分类是遥感领域的研究课题之一。本文提出了基于全局和局部信息的线性判别分析在SAR影像时间序列植被分类中的应用。实验证明,除了全局模式信息外,局部模式信息的使用提高了时序TerraSAR-X植被分类的精度和时间性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR image time series analysis in vegetation classification using global and local information based linear discriminant analysis
Vegetation classification using SAR images is one of the research topics in remote sensing. In this paper, SAR image time series analysis in vegetation classification using global and local information based linear discriminant analysis is presented. It is experimentally demonstrated that the use of local pattern information in addition to global pattern information has increased both accuracy and time performance in vegetation classification using time-series TerraSAR-X images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信