{"title":"广义Linnik和Mittag-Leffler分布的对数矩估计及其在金融建模中的应用","authors":"Dexter O. Cahoy, Wojbor A. Woyczy'nski","doi":"10.3844/jmssp.2018.156.166","DOIUrl":null,"url":null,"abstract":"We propose formal estimation procedures for the parameters of the generalized, three-parameter Linnik $gL(\\alpha,\\mu, \\delta)$ and Mittag-Leffler $gML(\\alpha,\\mu, \\delta)$ distributions. The estimators are derived from the moments of the log-transformed random variables, and are shown to be asymptotically unbiased. The estimation algorithms are computationally efficient and the proposed procedures are tested using the daily S\\&P 500 and Dow Jones index data. The results show that the standard two-parameter Linnik and Mittag-Leffler models are not flexible enough to accurately model the current stock market data.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Log-moment estimators for the generalized Linnik and Mittag-Leffler distributions with applications to financial modeling\",\"authors\":\"Dexter O. Cahoy, Wojbor A. Woyczy'nski\",\"doi\":\"10.3844/jmssp.2018.156.166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose formal estimation procedures for the parameters of the generalized, three-parameter Linnik $gL(\\\\alpha,\\\\mu, \\\\delta)$ and Mittag-Leffler $gML(\\\\alpha,\\\\mu, \\\\delta)$ distributions. The estimators are derived from the moments of the log-transformed random variables, and are shown to be asymptotically unbiased. The estimation algorithms are computationally efficient and the proposed procedures are tested using the daily S\\\\&P 500 and Dow Jones index data. The results show that the standard two-parameter Linnik and Mittag-Leffler models are not flexible enough to accurately model the current stock market data.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmssp.2018.156.166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2018.156.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Log-moment estimators for the generalized Linnik and Mittag-Leffler distributions with applications to financial modeling
We propose formal estimation procedures for the parameters of the generalized, three-parameter Linnik $gL(\alpha,\mu, \delta)$ and Mittag-Leffler $gML(\alpha,\mu, \delta)$ distributions. The estimators are derived from the moments of the log-transformed random variables, and are shown to be asymptotically unbiased. The estimation algorithms are computationally efficient and the proposed procedures are tested using the daily S\&P 500 and Dow Jones index data. The results show that the standard two-parameter Linnik and Mittag-Leffler models are not flexible enough to accurately model the current stock market data.