Herman G. J. Groot, Tunç Alkanat, E. Bondarev, P. D. With
{"title":"优化列车测试数据在现实世界中的再识别应用","authors":"Herman G. J. Groot, Tunç Alkanat, E. Bondarev, P. D. With","doi":"10.1145/3523111.3523121","DOIUrl":null,"url":null,"abstract":"Person re-identification (re-ID) aims to recognize an identity in non-overlapping camera views. Recently, re-ID received increased attention due to the growth of deep learning and its prominent applications in the field of automated video surveillance. The performance of deep learning-based methods relies heavily on the quality of training datasets and protocols. Particularly, parameters associated to the train and test set construction affect the overall performance. However, public re-ID datasets usually come with a fixed set of parameters, which are partly suitable for optimizing re-ID applications. In this paper, we study dataset construction parameters to improve re-ID performance. To this end, we first experiment on the temporal subsampling rate of the sequence of bounding boxes. Second, an experiment is performed on the effects of bounding-box enlargement under various temporal sampling rates. Thirdly, we analyze how the optimal choice of such dataset design parameters change with the dataset size. The experiments reveal that a performance increase of 2.1% Rank-1 is possible over a state-of-the-art re-ID model when optimizing the dataset construction parameters, thereby increasing the state-of-the-art performance from 91.9% to 94.0% Rank-1 on the popular DukeMTMC-reID dataset. The obtained results are not specific for the applied model and likely generalize to others.","PeriodicalId":185161,"journal":{"name":"Proceedings of the 2022 5th International Conference on Machine Vision and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Train-Test Data for Person Re-Identification in Real-World Applications\",\"authors\":\"Herman G. J. Groot, Tunç Alkanat, E. Bondarev, P. D. With\",\"doi\":\"10.1145/3523111.3523121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Person re-identification (re-ID) aims to recognize an identity in non-overlapping camera views. Recently, re-ID received increased attention due to the growth of deep learning and its prominent applications in the field of automated video surveillance. The performance of deep learning-based methods relies heavily on the quality of training datasets and protocols. Particularly, parameters associated to the train and test set construction affect the overall performance. However, public re-ID datasets usually come with a fixed set of parameters, which are partly suitable for optimizing re-ID applications. In this paper, we study dataset construction parameters to improve re-ID performance. To this end, we first experiment on the temporal subsampling rate of the sequence of bounding boxes. Second, an experiment is performed on the effects of bounding-box enlargement under various temporal sampling rates. Thirdly, we analyze how the optimal choice of such dataset design parameters change with the dataset size. The experiments reveal that a performance increase of 2.1% Rank-1 is possible over a state-of-the-art re-ID model when optimizing the dataset construction parameters, thereby increasing the state-of-the-art performance from 91.9% to 94.0% Rank-1 on the popular DukeMTMC-reID dataset. The obtained results are not specific for the applied model and likely generalize to others.\",\"PeriodicalId\":185161,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Machine Vision and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Machine Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3523111.3523121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523111.3523121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Train-Test Data for Person Re-Identification in Real-World Applications
Person re-identification (re-ID) aims to recognize an identity in non-overlapping camera views. Recently, re-ID received increased attention due to the growth of deep learning and its prominent applications in the field of automated video surveillance. The performance of deep learning-based methods relies heavily on the quality of training datasets and protocols. Particularly, parameters associated to the train and test set construction affect the overall performance. However, public re-ID datasets usually come with a fixed set of parameters, which are partly suitable for optimizing re-ID applications. In this paper, we study dataset construction parameters to improve re-ID performance. To this end, we first experiment on the temporal subsampling rate of the sequence of bounding boxes. Second, an experiment is performed on the effects of bounding-box enlargement under various temporal sampling rates. Thirdly, we analyze how the optimal choice of such dataset design parameters change with the dataset size. The experiments reveal that a performance increase of 2.1% Rank-1 is possible over a state-of-the-art re-ID model when optimizing the dataset construction parameters, thereby increasing the state-of-the-art performance from 91.9% to 94.0% Rank-1 on the popular DukeMTMC-reID dataset. The obtained results are not specific for the applied model and likely generalize to others.