基于本体的语义信息检索

J. Mustafa, S. Khan, K. Latif
{"title":"基于本体的语义信息检索","authors":"J. Mustafa, S. Khan, K. Latif","doi":"10.1109/IS.2008.4670473","DOIUrl":null,"url":null,"abstract":"Semantic-based information retrieval techniques understand the meanings of the concepts that users specify in their queries. The main drawback of the existing semantic-based information retrieval techniques is that none of them considers the context of the concept(s). We propose a semantic information retrieval framework to improve the precision of search results. In this paper, thematic similarity approach is employed for information retrieval in order to capture the context of particular concept(s). We store metadata information of source(s) in the form of RDF triples. We search userpsilas queries in the existing metadata by matching RDF triples instead of keywords. The results of the experiments performed on our framework showed improvements in precision and recall compared to the existing semantic-based information retrieval techniques.","PeriodicalId":305750,"journal":{"name":"2008 4th International IEEE Conference Intelligent Systems","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Ontology based semantic information retrieval\",\"authors\":\"J. Mustafa, S. Khan, K. Latif\",\"doi\":\"10.1109/IS.2008.4670473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic-based information retrieval techniques understand the meanings of the concepts that users specify in their queries. The main drawback of the existing semantic-based information retrieval techniques is that none of them considers the context of the concept(s). We propose a semantic information retrieval framework to improve the precision of search results. In this paper, thematic similarity approach is employed for information retrieval in order to capture the context of particular concept(s). We store metadata information of source(s) in the form of RDF triples. We search userpsilas queries in the existing metadata by matching RDF triples instead of keywords. The results of the experiments performed on our framework showed improvements in precision and recall compared to the existing semantic-based information retrieval techniques.\",\"PeriodicalId\":305750,\"journal\":{\"name\":\"2008 4th International IEEE Conference Intelligent Systems\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 4th International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2008.4670473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2008.4670473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

基于语义的信息检索技术理解用户在查询中指定的概念的含义。现有的基于语义的信息检索技术的主要缺点是它们都不考虑概念的上下文。为了提高搜索结果的准确性,我们提出了一个语义信息检索框架。本文采用主题相似度方法进行信息检索,以捕捉特定概念的语境。我们以RDF三元组的形式存储源的元数据信息。我们通过匹配RDF三元组而不是关键字来搜索现有元数据中的用户塞拉斯查询。实验结果表明,与现有的基于语义的信息检索技术相比,我们的框架在准确率和召回率方面有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ontology based semantic information retrieval
Semantic-based information retrieval techniques understand the meanings of the concepts that users specify in their queries. The main drawback of the existing semantic-based information retrieval techniques is that none of them considers the context of the concept(s). We propose a semantic information retrieval framework to improve the precision of search results. In this paper, thematic similarity approach is employed for information retrieval in order to capture the context of particular concept(s). We store metadata information of source(s) in the form of RDF triples. We search userpsilas queries in the existing metadata by matching RDF triples instead of keywords. The results of the experiments performed on our framework showed improvements in precision and recall compared to the existing semantic-based information retrieval techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信