基于深度学习的多用户肌电界面运动意图解码

Ki-Hee Park, Seong-Whan Lee
{"title":"基于深度学习的多用户肌电界面运动意图解码","authors":"Ki-Hee Park, Seong-Whan Lee","doi":"10.1109/IWW-BCI.2016.7457459","DOIUrl":null,"url":null,"abstract":"Recently, the development of practical myoelectric interfaces has resulted in the emergence of wearable rehabilitation robots such as arm prosthetics. In this paper, we propose a novel method of movement intention decoding based on the deep feature learning using electromyogram of human biosignals. In daily life, the inter-user variability cause decreases in performance by modulating target EMG patterns across different users. Therefore, we propose a user-adaptive decoding method for robust movement intention decoding in the inter-user variability, employing the convolutional neural network for the deep feature learning, trained by different users. In our experimental results, the proposed method predicted hand movement intention more accurately than a competing method.","PeriodicalId":208670,"journal":{"name":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Movement intention decoding based on deep learning for multiuser myoelectric interfaces\",\"authors\":\"Ki-Hee Park, Seong-Whan Lee\",\"doi\":\"10.1109/IWW-BCI.2016.7457459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the development of practical myoelectric interfaces has resulted in the emergence of wearable rehabilitation robots such as arm prosthetics. In this paper, we propose a novel method of movement intention decoding based on the deep feature learning using electromyogram of human biosignals. In daily life, the inter-user variability cause decreases in performance by modulating target EMG patterns across different users. Therefore, we propose a user-adaptive decoding method for robust movement intention decoding in the inter-user variability, employing the convolutional neural network for the deep feature learning, trained by different users. In our experimental results, the proposed method predicted hand movement intention more accurately than a competing method.\",\"PeriodicalId\":208670,\"journal\":{\"name\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2016.7457459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2016.7457459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119

摘要

最近,实用肌电接口的发展导致了可穿戴康复机器人的出现,如手臂假肢。本文提出了一种基于深度特征学习的基于人体生物信号肌电图的动作意图解码新方法。在日常生活中,用户间的可变性通过在不同用户之间调制目标肌电信号模式而导致性能下降。因此,我们提出了一种用户自适应解码方法,用于用户间可变性的鲁棒动作意图解码,采用卷积神经网络进行深度特征学习,由不同用户训练。在我们的实验结果中,所提出的方法比竞争对手的方法更准确地预测手部运动意图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Movement intention decoding based on deep learning for multiuser myoelectric interfaces
Recently, the development of practical myoelectric interfaces has resulted in the emergence of wearable rehabilitation robots such as arm prosthetics. In this paper, we propose a novel method of movement intention decoding based on the deep feature learning using electromyogram of human biosignals. In daily life, the inter-user variability cause decreases in performance by modulating target EMG patterns across different users. Therefore, we propose a user-adaptive decoding method for robust movement intention decoding in the inter-user variability, employing the convolutional neural network for the deep feature learning, trained by different users. In our experimental results, the proposed method predicted hand movement intention more accurately than a competing method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信