基于自适应神经模糊推理系统的机械臂控制

D. Adhyaru, J. Patel, Rishi Gianchandani
{"title":"基于自适应神经模糊推理系统的机械臂控制","authors":"D. Adhyaru, J. Patel, Rishi Gianchandani","doi":"10.1109/ICMET.2010.5598379","DOIUrl":null,"url":null,"abstract":"Robot manipulators have become increasingly important in the field of flexible automation. Through the years considerable research effort has been made in their controller design. In order to achieve accurate trajectory tracking and good control performance, a number of control schemes have been developed. Amongst these, ANFIS (Adaptive Neuro-Fuzzy Inference System) has provided best results for control of robotic manipulators as compared to the conventional control strategies.","PeriodicalId":415118,"journal":{"name":"2010 International Conference on Mechanical and Electrical Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Adaptive Neuro-Fuzzy Inference System based control of robotic manipulators\",\"authors\":\"D. Adhyaru, J. Patel, Rishi Gianchandani\",\"doi\":\"10.1109/ICMET.2010.5598379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot manipulators have become increasingly important in the field of flexible automation. Through the years considerable research effort has been made in their controller design. In order to achieve accurate trajectory tracking and good control performance, a number of control schemes have been developed. Amongst these, ANFIS (Adaptive Neuro-Fuzzy Inference System) has provided best results for control of robotic manipulators as compared to the conventional control strategies.\",\"PeriodicalId\":415118,\"journal\":{\"name\":\"2010 International Conference on Mechanical and Electrical Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Mechanical and Electrical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMET.2010.5598379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Mechanical and Electrical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMET.2010.5598379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在柔性自动化领域中,机器人机械手已变得越来越重要。经过多年的研究工作,在他们的控制器设计。为了实现精确的轨迹跟踪和良好的控制性能,人们开发了许多控制方案。其中,与传统控制策略相比,ANFIS(自适应神经模糊推理系统)为机器人操纵器的控制提供了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Neuro-Fuzzy Inference System based control of robotic manipulators
Robot manipulators have become increasingly important in the field of flexible automation. Through the years considerable research effort has been made in their controller design. In order to achieve accurate trajectory tracking and good control performance, a number of control schemes have been developed. Amongst these, ANFIS (Adaptive Neuro-Fuzzy Inference System) has provided best results for control of robotic manipulators as compared to the conventional control strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信