通过尿液样本预测患者血糖水平的集成学习

M. Ati, Muhammad Ikram Ali, Muhammad Usman Ghani Khan
{"title":"通过尿液样本预测患者血糖水平的集成学习","authors":"M. Ati, Muhammad Ikram Ali, Muhammad Usman Ghani Khan","doi":"10.1109/ICECTA57148.2022.9990415","DOIUrl":null,"url":null,"abstract":"All areas of our lives are evolving and growing with machine learning (ML) including the healthcare system. In healthcare systems, diabetes is one of the extremely deadly diseases that could cause patients multiple organ failures, if we cannot take significant action on time. In this paper, we are using the ensemble learning technique of ML with stacking to predict the glucose(mg/dL) level of diabetic patients by using a urine dataset. For the experimental evaluation we utilized Support Vector Regressor (SVR), Decision Tree Regressor (DT), KNeighbors Regressor (KN) models, and evaluation metrics like Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Average Precision (MAP) is used to evaluate the outcomes. Throughout the assessment, it is assessed that the Ensemble model predicts the glucose level (mg/dL) with the lowest 0.09 RMSE, 0.22 MSE, and 3.1 MAP.","PeriodicalId":337798,"journal":{"name":"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Ensemble Learning to Predict Glucose Level of Patient by Urine Sample\",\"authors\":\"M. Ati, Muhammad Ikram Ali, Muhammad Usman Ghani Khan\",\"doi\":\"10.1109/ICECTA57148.2022.9990415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All areas of our lives are evolving and growing with machine learning (ML) including the healthcare system. In healthcare systems, diabetes is one of the extremely deadly diseases that could cause patients multiple organ failures, if we cannot take significant action on time. In this paper, we are using the ensemble learning technique of ML with stacking to predict the glucose(mg/dL) level of diabetic patients by using a urine dataset. For the experimental evaluation we utilized Support Vector Regressor (SVR), Decision Tree Regressor (DT), KNeighbors Regressor (KN) models, and evaluation metrics like Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Average Precision (MAP) is used to evaluate the outcomes. Throughout the assessment, it is assessed that the Ensemble model predicts the glucose level (mg/dL) with the lowest 0.09 RMSE, 0.22 MSE, and 3.1 MAP.\",\"PeriodicalId\":337798,\"journal\":{\"name\":\"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECTA57148.2022.9990415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTA57148.2022.9990415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着机器学习(ML)的发展,我们生活的各个领域都在不断发展壮大,包括医疗保健系统。在医疗保健系统中,糖尿病是一种极其致命的疾病,如果我们不能及时采取重大行动,它可能导致患者多器官衰竭。在本文中,我们使用ML与堆叠的集成学习技术,通过使用尿液数据集来预测糖尿病患者的葡萄糖(mg/dL)水平。对于实验评估,我们使用支持向量回归(SVR),决策树回归(DT), KNeighbors回归(KN)模型,并使用均方根误差(RMSE),均方误差(MSE),平均平均精度(MAP)等评估指标来评估结果。在整个评估过程中,评估了Ensemble模型预测葡萄糖水平(mg/dL)的最低RMSE为0.09,MSE为0.22,MAP为3.1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ensemble Learning to Predict Glucose Level of Patient by Urine Sample
All areas of our lives are evolving and growing with machine learning (ML) including the healthcare system. In healthcare systems, diabetes is one of the extremely deadly diseases that could cause patients multiple organ failures, if we cannot take significant action on time. In this paper, we are using the ensemble learning technique of ML with stacking to predict the glucose(mg/dL) level of diabetic patients by using a urine dataset. For the experimental evaluation we utilized Support Vector Regressor (SVR), Decision Tree Regressor (DT), KNeighbors Regressor (KN) models, and evaluation metrics like Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Average Precision (MAP) is used to evaluate the outcomes. Throughout the assessment, it is assessed that the Ensemble model predicts the glucose level (mg/dL) with the lowest 0.09 RMSE, 0.22 MSE, and 3.1 MAP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信