过程诊断中神经网络算法的发展与应用

B. Upadhyaya, G. Mathai, E. Eryurek
{"title":"过程诊断中神经网络算法的发展与应用","authors":"B. Upadhyaya, G. Mathai, E. Eryurek","doi":"10.1109/CDC.1990.203401","DOIUrl":null,"url":null,"abstract":"The following three problems are addressed: (1) multiple-input single-output heteroassociative networks for signal validation for distributed sensor arrays; (2) multiple-input multiple-output autoassociative networks for plant-wide monitoring of a set of process variables for diagnostics; and (3) artificial neural networks for online estimation of chemical composition from spectroscopy data. Both static and dynamic forms of the backpropagation network (BPN) have been developed and applied to the solution of these problems. Chemometric data from Raman FT (Fourier transform) spectroscopy was used to estimate chemical sample composition. Several features of network training and implementations are presented, including adaptive updating of the sigmoidal threshold function during training, an optimal choice of hidden layer nodes using Shannon's information theory approach, and automatic scaling of network inputs and outputs for data encoding and decoding. The details of the development and implementation of the multilayer perceptrons and applications to industrial problems are highlighted.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Development and application of neural network algorithms for process diagnostics\",\"authors\":\"B. Upadhyaya, G. Mathai, E. Eryurek\",\"doi\":\"10.1109/CDC.1990.203401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following three problems are addressed: (1) multiple-input single-output heteroassociative networks for signal validation for distributed sensor arrays; (2) multiple-input multiple-output autoassociative networks for plant-wide monitoring of a set of process variables for diagnostics; and (3) artificial neural networks for online estimation of chemical composition from spectroscopy data. Both static and dynamic forms of the backpropagation network (BPN) have been developed and applied to the solution of these problems. Chemometric data from Raman FT (Fourier transform) spectroscopy was used to estimate chemical sample composition. Several features of network training and implementations are presented, including adaptive updating of the sigmoidal threshold function during training, an optimal choice of hidden layer nodes using Shannon's information theory approach, and automatic scaling of network inputs and outputs for data encoding and decoding. The details of the development and implementation of the multilayer perceptrons and applications to industrial problems are highlighted.<<ETX>>\",\"PeriodicalId\":287089,\"journal\":{\"name\":\"29th IEEE Conference on Decision and Control\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"29th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1990.203401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文主要解决以下三个问题:(1)分布式传感器阵列信号验证的多输入单输出异构关联网络;(2)多输入多输出自关联网络,用于全厂监测一组过程变量,用于诊断;(3)利用人工神经网络在线估计光谱数据中的化学成分。静态和动态形式的反向传播网络(BPN)已被开发并应用于解决这些问题。利用拉曼傅立叶变换光谱的化学计量学数据来估计化学样品的成分。介绍了网络训练和实现的几个特点,包括训练过程中s型阈值函数的自适应更新,利用Shannon信息论方法对隐藏层节点进行最优选择,以及数据编码和解码时网络输入和输出的自动缩放。重点介绍了多层感知器的开发和实现的细节以及在工业问题上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and application of neural network algorithms for process diagnostics
The following three problems are addressed: (1) multiple-input single-output heteroassociative networks for signal validation for distributed sensor arrays; (2) multiple-input multiple-output autoassociative networks for plant-wide monitoring of a set of process variables for diagnostics; and (3) artificial neural networks for online estimation of chemical composition from spectroscopy data. Both static and dynamic forms of the backpropagation network (BPN) have been developed and applied to the solution of these problems. Chemometric data from Raman FT (Fourier transform) spectroscopy was used to estimate chemical sample composition. Several features of network training and implementations are presented, including adaptive updating of the sigmoidal threshold function during training, an optimal choice of hidden layer nodes using Shannon's information theory approach, and automatic scaling of network inputs and outputs for data encoding and decoding. The details of the development and implementation of the multilayer perceptrons and applications to industrial problems are highlighted.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信