Sam Shamun, B. Zincir, P. Shukla, Pablo Garcia Valladolid, S. Verhelst, M. Tunér
{"title":"基于PPC策略的压缩点火发动机甲醇充装冷却效果定量分析","authors":"Sam Shamun, B. Zincir, P. Shukla, Pablo Garcia Valladolid, S. Verhelst, M. Tunér","doi":"10.1115/ICEF2018-9657","DOIUrl":null,"url":null,"abstract":"The charge cooling effect of methanol was studied and compared to that of iso-octane. The reduction in compression work due to fuel evaporation and the gain in expansion work were evaluated by the means of in-cylinder pressure measurements in a HD CI engine. A single injection strategy was utilized to obtain a longer premixing period to adequately capture the cooling effect. The effect was clear for both tested fuels, however, methanol generally caused the pressure to reduce more than iso-octane near TDC. It was found that the contribution of reduced compression work to the increased net indicated efficiency is negligible. Regarding the expansion work, a slower combustion with higher pressure was obtained for methanol in comparison to that of iso-octane due to the cooling effect of fuel evaporation. As a result from this, a lower heat transfer loss was obtained for methanol, in addition to the significantly lower NOx emissions.","PeriodicalId":441369,"journal":{"name":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quantification and Analysis of the Charge Cooling Effect of Methanol in a Compression Ignition Engine Utilizing PPC Strategy\",\"authors\":\"Sam Shamun, B. Zincir, P. Shukla, Pablo Garcia Valladolid, S. Verhelst, M. Tunér\",\"doi\":\"10.1115/ICEF2018-9657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The charge cooling effect of methanol was studied and compared to that of iso-octane. The reduction in compression work due to fuel evaporation and the gain in expansion work were evaluated by the means of in-cylinder pressure measurements in a HD CI engine. A single injection strategy was utilized to obtain a longer premixing period to adequately capture the cooling effect. The effect was clear for both tested fuels, however, methanol generally caused the pressure to reduce more than iso-octane near TDC. It was found that the contribution of reduced compression work to the increased net indicated efficiency is negligible. Regarding the expansion work, a slower combustion with higher pressure was obtained for methanol in comparison to that of iso-octane due to the cooling effect of fuel evaporation. As a result from this, a lower heat transfer loss was obtained for methanol, in addition to the significantly lower NOx emissions.\",\"PeriodicalId\":441369,\"journal\":{\"name\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICEF2018-9657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICEF2018-9657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantification and Analysis of the Charge Cooling Effect of Methanol in a Compression Ignition Engine Utilizing PPC Strategy
The charge cooling effect of methanol was studied and compared to that of iso-octane. The reduction in compression work due to fuel evaporation and the gain in expansion work were evaluated by the means of in-cylinder pressure measurements in a HD CI engine. A single injection strategy was utilized to obtain a longer premixing period to adequately capture the cooling effect. The effect was clear for both tested fuels, however, methanol generally caused the pressure to reduce more than iso-octane near TDC. It was found that the contribution of reduced compression work to the increased net indicated efficiency is negligible. Regarding the expansion work, a slower combustion with higher pressure was obtained for methanol in comparison to that of iso-octane due to the cooling effect of fuel evaporation. As a result from this, a lower heat transfer loss was obtained for methanol, in addition to the significantly lower NOx emissions.