修正粘性阻尼模型的机械臂一阶运动方程

P. Herman
{"title":"修正粘性阻尼模型的机械臂一阶运动方程","authors":"P. Herman","doi":"10.1109/SYSTOL.2010.5676055","DOIUrl":null,"url":null,"abstract":"Some properties of first-order equations of motion, described originally by Jain and Rodriguez, with a viscous damping model are presented in this paper. The equations arise from a manipulator mass decomposition and are applicable for serial manipulators. In contrast with classical viscous damping model the modified viscous damping model takes into account both kinematic and mechanical parameters of the manipulator. The proposed approach is shown for a 2-DOF planar manipulator and a 3-DOF spatial robot arm.","PeriodicalId":253370,"journal":{"name":"2010 Conference on Control and Fault-Tolerant Systems (SysTol)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-order equations of motion for manipulators with modified viscous damping model\",\"authors\":\"P. Herman\",\"doi\":\"10.1109/SYSTOL.2010.5676055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some properties of first-order equations of motion, described originally by Jain and Rodriguez, with a viscous damping model are presented in this paper. The equations arise from a manipulator mass decomposition and are applicable for serial manipulators. In contrast with classical viscous damping model the modified viscous damping model takes into account both kinematic and mechanical parameters of the manipulator. The proposed approach is shown for a 2-DOF planar manipulator and a 3-DOF spatial robot arm.\",\"PeriodicalId\":253370,\"journal\":{\"name\":\"2010 Conference on Control and Fault-Tolerant Systems (SysTol)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Conference on Control and Fault-Tolerant Systems (SysTol)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYSTOL.2010.5676055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Conference on Control and Fault-Tolerant Systems (SysTol)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSTOL.2010.5676055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了最初由Jain和Rodriguez描述的一阶运动方程具有粘性阻尼模型的一些性质。该方程由机械臂质量分解而来,适用于串联机械臂。与传统的粘性阻尼模型相比,改进的粘性阻尼模型同时考虑了机械臂的运动学和力学参数。以2-DOF平面机械臂和3-DOF空间机械臂为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-order equations of motion for manipulators with modified viscous damping model
Some properties of first-order equations of motion, described originally by Jain and Rodriguez, with a viscous damping model are presented in this paper. The equations arise from a manipulator mass decomposition and are applicable for serial manipulators. In contrast with classical viscous damping model the modified viscous damping model takes into account both kinematic and mechanical parameters of the manipulator. The proposed approach is shown for a 2-DOF planar manipulator and a 3-DOF spatial robot arm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信