J. Hajny, Petr Dzurenda, Sara Ricci, L. Malina, K. Vrba
{"title":"受限设备上基于配对的椭圆曲线密码的性能分析","authors":"J. Hajny, Petr Dzurenda, Sara Ricci, L. Malina, K. Vrba","doi":"10.1109/ICUMT.2018.8631228","DOIUrl":null,"url":null,"abstract":"The paper deals with the implementation aspects of the bilinear pairing operation over an elliptic curve on constrained devices, such as smart cards, embedded devices, smart meters and similar devices. Although cryptographic constructions, such as group signatures, anonymous credentials or identity-based encryption schemes, often rely on the pairing operation, the implementation of such schemes into practical applications is not straightforward, in fact, it may become very difficult. In this paper, we show that the implementation is difficult not only due to the high computational complexity, but also due to the lack of cryptographic libraries and programming interfaces. In particular, we show how difficult it is to implement pairing-based schemes on constrained devices and show the performance of various libraries on different platforms. Furthermore, we show the performance estimates of fundamental cryptographic constructions, the group signatures. The purpose of this paper is to reduce the gap between the cryptographic designers and developers and give performance results that can be used for the estimation of the implementability and performance of novel, upcoming schemes.","PeriodicalId":211042,"journal":{"name":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Analysis of Pairing-Based Elliptic Curve Cryptography on Constrained Devices\",\"authors\":\"J. Hajny, Petr Dzurenda, Sara Ricci, L. Malina, K. Vrba\",\"doi\":\"10.1109/ICUMT.2018.8631228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the implementation aspects of the bilinear pairing operation over an elliptic curve on constrained devices, such as smart cards, embedded devices, smart meters and similar devices. Although cryptographic constructions, such as group signatures, anonymous credentials or identity-based encryption schemes, often rely on the pairing operation, the implementation of such schemes into practical applications is not straightforward, in fact, it may become very difficult. In this paper, we show that the implementation is difficult not only due to the high computational complexity, but also due to the lack of cryptographic libraries and programming interfaces. In particular, we show how difficult it is to implement pairing-based schemes on constrained devices and show the performance of various libraries on different platforms. Furthermore, we show the performance estimates of fundamental cryptographic constructions, the group signatures. The purpose of this paper is to reduce the gap between the cryptographic designers and developers and give performance results that can be used for the estimation of the implementability and performance of novel, upcoming schemes.\",\"PeriodicalId\":211042,\"journal\":{\"name\":\"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUMT.2018.8631228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUMT.2018.8631228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Analysis of Pairing-Based Elliptic Curve Cryptography on Constrained Devices
The paper deals with the implementation aspects of the bilinear pairing operation over an elliptic curve on constrained devices, such as smart cards, embedded devices, smart meters and similar devices. Although cryptographic constructions, such as group signatures, anonymous credentials or identity-based encryption schemes, often rely on the pairing operation, the implementation of such schemes into practical applications is not straightforward, in fact, it may become very difficult. In this paper, we show that the implementation is difficult not only due to the high computational complexity, but also due to the lack of cryptographic libraries and programming interfaces. In particular, we show how difficult it is to implement pairing-based schemes on constrained devices and show the performance of various libraries on different platforms. Furthermore, we show the performance estimates of fundamental cryptographic constructions, the group signatures. The purpose of this paper is to reduce the gap between the cryptographic designers and developers and give performance results that can be used for the estimation of the implementability and performance of novel, upcoming schemes.