基于网格聚类的自治分布式网络无线地图构建

Keita Katagiri, T. Fujii
{"title":"基于网格聚类的自治分布式网络无线地图构建","authors":"Keita Katagiri, T. Fujii","doi":"10.1109/ICUFN49451.2021.9528740","DOIUrl":null,"url":null,"abstract":"We have proposed a method of the radio map construction using clustering algorithm in our conventional work. The method enables us to accurately predict the radio environment while reducing the registered data size. However, this clustering algorithm has been only applied to the wireless system with fixed transmitter location. Thus, this paper considers the radio maps construction based on the clustering for the autonomous distributed networks that both transmitter and receiver dynamically move. The proposed method classifies the similar average received signal power samples using k-means++. The emulation results clarify that the proposed method can estimate the radio environment with high accuracy while reducing the registered data size compared to the conventional radio map.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"6 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mesh-Clustering-Based Radio Maps Construction for Autonomous Distributed Networks\",\"authors\":\"Keita Katagiri, T. Fujii\",\"doi\":\"10.1109/ICUFN49451.2021.9528740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed a method of the radio map construction using clustering algorithm in our conventional work. The method enables us to accurately predict the radio environment while reducing the registered data size. However, this clustering algorithm has been only applied to the wireless system with fixed transmitter location. Thus, this paper considers the radio maps construction based on the clustering for the autonomous distributed networks that both transmitter and receiver dynamically move. The proposed method classifies the similar average received signal power samples using k-means++. The emulation results clarify that the proposed method can estimate the radio environment with high accuracy while reducing the registered data size compared to the conventional radio map.\",\"PeriodicalId\":318542,\"journal\":{\"name\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"6 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN49451.2021.9528740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在传统的工作中,我们提出了一种利用聚类算法构建无线电地图的方法。该方法使我们能够准确地预测无线电环境,同时减少了注册数据的大小。然而,这种聚类算法只适用于发射机位置固定的无线系统。因此,本文考虑了基于聚类的无线地图构建方法,该方法适用于发射端和接收端都动态移动的自治分布式网络。该方法利用k-means++对相似的平均接收信号功率样本进行分类。仿真结果表明,与传统的射电图相比,该方法在减少配准数据量的同时,能够对射电环境进行高精度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesh-Clustering-Based Radio Maps Construction for Autonomous Distributed Networks
We have proposed a method of the radio map construction using clustering algorithm in our conventional work. The method enables us to accurately predict the radio environment while reducing the registered data size. However, this clustering algorithm has been only applied to the wireless system with fixed transmitter location. Thus, this paper considers the radio maps construction based on the clustering for the autonomous distributed networks that both transmitter and receiver dynamically move. The proposed method classifies the similar average received signal power samples using k-means++. The emulation results clarify that the proposed method can estimate the radio environment with high accuracy while reducing the registered data size compared to the conventional radio map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信