用于高阶模型检验的笛卡尔闭范畴

M. Hofmann, J. Ledent
{"title":"用于高阶模型检验的笛卡尔闭范畴","authors":"M. Hofmann, J. Ledent","doi":"10.1109/LICS.2017.8005120","DOIUrl":null,"url":null,"abstract":"In previous work we have described the construction of an abstract lattice from a given Büchi automaton. The abstract lattice is finite and has the following key properties. (i) There is a Galois insertion between it and the lattice of languages of finite and infinite words over a given alphabet. (ii) The abstraction is faithful with respect to acceptance by the automaton. (iii) Least fixpoints and ω-iterations (but not in general greatest fixpoints) can be computed on the level of the abstract lattice.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A cartesian-closed category for higher-order model checking\",\"authors\":\"M. Hofmann, J. Ledent\",\"doi\":\"10.1109/LICS.2017.8005120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous work we have described the construction of an abstract lattice from a given Büchi automaton. The abstract lattice is finite and has the following key properties. (i) There is a Galois insertion between it and the lattice of languages of finite and infinite words over a given alphabet. (ii) The abstraction is faithful with respect to acceptance by the automaton. (iii) Least fixpoints and ω-iterations (but not in general greatest fixpoints) can be computed on the level of the abstract lattice.\",\"PeriodicalId\":313950,\"journal\":{\"name\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2017.8005120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在以前的工作中,我们描述了从给定的 chi自动机构造抽象格。抽象格是有限的,并具有以下关键性质。(1)在它和给定字母表上的有限词和无限词的语言晶格之间存在伽罗瓦插入。(二)抽象对于自动机的接受是忠实的。(iii)最小不动点和ω-迭代(但一般不是最大不动点)可以在抽象格的水平上计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cartesian-closed category for higher-order model checking
In previous work we have described the construction of an abstract lattice from a given Büchi automaton. The abstract lattice is finite and has the following key properties. (i) There is a Galois insertion between it and the lattice of languages of finite and infinite words over a given alphabet. (ii) The abstraction is faithful with respect to acceptance by the automaton. (iii) Least fixpoints and ω-iterations (but not in general greatest fixpoints) can be computed on the level of the abstract lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信