{"title":"用于高阶模型检验的笛卡尔闭范畴","authors":"M. Hofmann, J. Ledent","doi":"10.1109/LICS.2017.8005120","DOIUrl":null,"url":null,"abstract":"In previous work we have described the construction of an abstract lattice from a given Büchi automaton. The abstract lattice is finite and has the following key properties. (i) There is a Galois insertion between it and the lattice of languages of finite and infinite words over a given alphabet. (ii) The abstraction is faithful with respect to acceptance by the automaton. (iii) Least fixpoints and ω-iterations (but not in general greatest fixpoints) can be computed on the level of the abstract lattice.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A cartesian-closed category for higher-order model checking\",\"authors\":\"M. Hofmann, J. Ledent\",\"doi\":\"10.1109/LICS.2017.8005120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous work we have described the construction of an abstract lattice from a given Büchi automaton. The abstract lattice is finite and has the following key properties. (i) There is a Galois insertion between it and the lattice of languages of finite and infinite words over a given alphabet. (ii) The abstraction is faithful with respect to acceptance by the automaton. (iii) Least fixpoints and ω-iterations (but not in general greatest fixpoints) can be computed on the level of the abstract lattice.\",\"PeriodicalId\":313950,\"journal\":{\"name\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2017.8005120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cartesian-closed category for higher-order model checking
In previous work we have described the construction of an abstract lattice from a given Büchi automaton. The abstract lattice is finite and has the following key properties. (i) There is a Galois insertion between it and the lattice of languages of finite and infinite words over a given alphabet. (ii) The abstraction is faithful with respect to acceptance by the automaton. (iii) Least fixpoints and ω-iterations (but not in general greatest fixpoints) can be computed on the level of the abstract lattice.