N. Axvig, D. Dreher, K. Morrison, E. Psota, L. C. Pérez, J.L. Walker
{"title":"LDPC码的平均最小和译码","authors":"N. Axvig, D. Dreher, K. Morrison, E. Psota, L. C. Pérez, J.L. Walker","doi":"10.1109/TURBOCODING.2008.4658725","DOIUrl":null,"url":null,"abstract":"Simulations have shown that the outputs of min-sum (MS) decoding generally behave in one of two ways: either the output vector eventually stabilizes at a codeword or it eventually cycles through a finite set of vectors that may include both codewords and non-codewords. The latter behavior has significantly contributed to the difficulty in studying the performance of this decoder. To overcome this problem, a new decoder, average min-sum (AMS), is proposed; this decoder outputs the average of the MS output vectors over a finite set of iterations. Simulations comparing MS, AMS, linear programming (LP) decoding, and maximum likelihood (ML) decoding are presented, illustrating the relative performances of each of these decoders. In general, MS and AMS have comparable word error rates; however, in the simulation of a code with large block length, AMS has a significantly lower bit error rate. Finally, AMS pseudocodewords are introduced and their relationship to graph cover and LP pseudocodewords is explored, with particular focus on the AMS pseudocodewords of regular LDPC codes and cycle codes.","PeriodicalId":284046,"journal":{"name":"2008 5th International Symposium on Turbo Codes and Related Topics","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Average min-sum decoding of LDPC codes\",\"authors\":\"N. Axvig, D. Dreher, K. Morrison, E. Psota, L. C. Pérez, J.L. Walker\",\"doi\":\"10.1109/TURBOCODING.2008.4658725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulations have shown that the outputs of min-sum (MS) decoding generally behave in one of two ways: either the output vector eventually stabilizes at a codeword or it eventually cycles through a finite set of vectors that may include both codewords and non-codewords. The latter behavior has significantly contributed to the difficulty in studying the performance of this decoder. To overcome this problem, a new decoder, average min-sum (AMS), is proposed; this decoder outputs the average of the MS output vectors over a finite set of iterations. Simulations comparing MS, AMS, linear programming (LP) decoding, and maximum likelihood (ML) decoding are presented, illustrating the relative performances of each of these decoders. In general, MS and AMS have comparable word error rates; however, in the simulation of a code with large block length, AMS has a significantly lower bit error rate. Finally, AMS pseudocodewords are introduced and their relationship to graph cover and LP pseudocodewords is explored, with particular focus on the AMS pseudocodewords of regular LDPC codes and cycle codes.\",\"PeriodicalId\":284046,\"journal\":{\"name\":\"2008 5th International Symposium on Turbo Codes and Related Topics\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th International Symposium on Turbo Codes and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TURBOCODING.2008.4658725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th International Symposium on Turbo Codes and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TURBOCODING.2008.4658725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulations have shown that the outputs of min-sum (MS) decoding generally behave in one of two ways: either the output vector eventually stabilizes at a codeword or it eventually cycles through a finite set of vectors that may include both codewords and non-codewords. The latter behavior has significantly contributed to the difficulty in studying the performance of this decoder. To overcome this problem, a new decoder, average min-sum (AMS), is proposed; this decoder outputs the average of the MS output vectors over a finite set of iterations. Simulations comparing MS, AMS, linear programming (LP) decoding, and maximum likelihood (ML) decoding are presented, illustrating the relative performances of each of these decoders. In general, MS and AMS have comparable word error rates; however, in the simulation of a code with large block length, AMS has a significantly lower bit error rate. Finally, AMS pseudocodewords are introduced and their relationship to graph cover and LP pseudocodewords is explored, with particular focus on the AMS pseudocodewords of regular LDPC codes and cycle codes.