基于通话记录的多sim卡用户分类识别方法

Charith Soysa, Savindi Karunathilaka, Amali Matharaarachchi, Himashi Rodrigo, Uthayasanker Thayasivam
{"title":"基于通话记录的多sim卡用户分类识别方法","authors":"Charith Soysa, Savindi Karunathilaka, Amali Matharaarachchi, Himashi Rodrigo, Uthayasanker Thayasivam","doi":"10.1109/NITC48475.2019.9114444","DOIUrl":null,"url":null,"abstract":"In this paper, we present a categorical classification approach for identifying multi-SIM users from Call Detail Records. Multi-SIM user classification is an unexplored domain in research literature and remains a challenging problem due to the diversity in telecom user population. This paper presents a subpopulation-based classification approach which incorporates this variety into the model, which is able to identify multi-SIM usage with higher precision and recall. A comparison of our approach to other baseline approaches (Gaussian Naive Bayes, Bernoulli Naive Bayes & Linear SVC) shows the effectiveness of subsample modelling for detecting multi-SIM usage. Additionally, we present an empirical study with which we quantify the contribution of oversampling and feature selection for multi-SIM detection. Further, using feature importance, we are able to identify possible rationales behind multi-SIM usage.","PeriodicalId":386923,"journal":{"name":"2019 National Information Technology Conference (NITC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorical Classification Approach for Identifying Multi-SIM Users from Call Detail Records\",\"authors\":\"Charith Soysa, Savindi Karunathilaka, Amali Matharaarachchi, Himashi Rodrigo, Uthayasanker Thayasivam\",\"doi\":\"10.1109/NITC48475.2019.9114444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a categorical classification approach for identifying multi-SIM users from Call Detail Records. Multi-SIM user classification is an unexplored domain in research literature and remains a challenging problem due to the diversity in telecom user population. This paper presents a subpopulation-based classification approach which incorporates this variety into the model, which is able to identify multi-SIM usage with higher precision and recall. A comparison of our approach to other baseline approaches (Gaussian Naive Bayes, Bernoulli Naive Bayes & Linear SVC) shows the effectiveness of subsample modelling for detecting multi-SIM usage. Additionally, we present an empirical study with which we quantify the contribution of oversampling and feature selection for multi-SIM detection. Further, using feature importance, we are able to identify possible rationales behind multi-SIM usage.\",\"PeriodicalId\":386923,\"journal\":{\"name\":\"2019 National Information Technology Conference (NITC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 National Information Technology Conference (NITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NITC48475.2019.9114444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Information Technology Conference (NITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NITC48475.2019.9114444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种从呼叫详细记录中识别多sim卡用户的分类方法。由于电信用户群体的多样性,多sim卡用户分类在研究文献中是一个尚未探索的领域,并且仍然是一个具有挑战性的问题。本文提出了一种基于子种群的分类方法,该方法将这种多样性纳入模型,能够以更高的精度和召回率识别多sim卡的使用情况。我们的方法与其他基线方法(高斯朴素贝叶斯,伯努利朴素贝叶斯和线性SVC)的比较显示了子样本建模检测多sim卡使用的有效性。此外,我们提出了一项实证研究,我们量化了过采样和特征选择对多sim检测的贡献。此外,使用功能重要性,我们能够确定多sim卡使用背后可能的理由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorical Classification Approach for Identifying Multi-SIM Users from Call Detail Records
In this paper, we present a categorical classification approach for identifying multi-SIM users from Call Detail Records. Multi-SIM user classification is an unexplored domain in research literature and remains a challenging problem due to the diversity in telecom user population. This paper presents a subpopulation-based classification approach which incorporates this variety into the model, which is able to identify multi-SIM usage with higher precision and recall. A comparison of our approach to other baseline approaches (Gaussian Naive Bayes, Bernoulli Naive Bayes & Linear SVC) shows the effectiveness of subsample modelling for detecting multi-SIM usage. Additionally, we present an empirical study with which we quantify the contribution of oversampling and feature selection for multi-SIM detection. Further, using feature importance, we are able to identify possible rationales behind multi-SIM usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信