库仑能量网络训练方案的改进

John F. Vassilopoulos, C. Koutsougeras
{"title":"库仑能量网络训练方案的改进","authors":"John F. Vassilopoulos, C. Koutsougeras","doi":"10.1109/TAI.1996.560451","DOIUrl":null,"url":null,"abstract":"We discuss the interesting perspective offered by the Coulomb Energy network and we identify certain disadvantages with the existing approach to training it. We address these problems by constraining its architecture (topology) and offer a derivation of the new associated training algorithm. We study further refinements of this algorithm. Most notably, existing genetic algorithms are employed as initial search techniques and simulation results are provided.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinements in training schemes for the Coulomb Energy network\",\"authors\":\"John F. Vassilopoulos, C. Koutsougeras\",\"doi\":\"10.1109/TAI.1996.560451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the interesting perspective offered by the Coulomb Energy network and we identify certain disadvantages with the existing approach to training it. We address these problems by constraining its architecture (topology) and offer a derivation of the new associated training algorithm. We study further refinements of this algorithm. Most notably, existing genetic algorithms are employed as initial search techniques and simulation results are provided.\",\"PeriodicalId\":209171,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1996.560451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了库仑能量网络提供的有趣观点,并指出了现有训练方法的某些缺点。我们通过约束其结构(拓扑)来解决这些问题,并提供新的相关训练算法的推导。我们研究了该算法的进一步改进。最值得注意的是,采用现有的遗传算法作为初始搜索技术,并给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinements in training schemes for the Coulomb Energy network
We discuss the interesting perspective offered by the Coulomb Energy network and we identify certain disadvantages with the existing approach to training it. We address these problems by constraining its architecture (topology) and offer a derivation of the new associated training algorithm. We study further refinements of this algorithm. Most notably, existing genetic algorithms are employed as initial search techniques and simulation results are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信